

4 December 2018

Initial 1.9Moz Resource for Eastern Margin Contact at King of the Hills Triggers Strategic Review of Bulk Mining Options

Strategic review underway to evaluate economics of a bulk underground and/or open pit mining and standalone processing operations

- Mineral Resource estimate completed for the newly identified Eastern Margin Contact at the King of the Hills (KOTH) gold mine, located adjacent to existing mining areas:
 - o Indicated and Inferred Resource of 28.7Mt at 2.0g/t Au for 1.88Moz of contained gold
- The Resource, which is based on underground drilling completed by Red 5 to date together with historical drilling data, covers 2,200m of the strike of the Eastern Margin Contact to a depth below pit of 130m in the south and 300m in the north. The mineralisation remains open both down-dip and along strike in both directions.
- Red 5 plans to investigate this bulk mining opportunity in three Phases with overlapping time frames:
 - Phase 1 Upgrading of the initial bulk mining Mineral Resource of 1.9Moz;
 - Phase 2 Exploration to increase the Resource in total tonnage and potentially grade; and
 - Phase 3 Strategic review of development options, open pit and bulk underground potential, including regional deposits not currently in the Resource.
- In addition to the potential to extend the current Resource to a greater depth below the open pit, multiple high-priority areas have been identified along the granodiorite/ultramafic contact that may also host additional resources.
- Bulk mining at King of the Hills is expected to provide easier-to-mine ounces and lower per tonne mining costs.

Red 5 Managing Director, Mark Williams, said: "This initial bulk resource at King of the Hills is a gamechanger for Red 5. Based on the drilling completed to date and assessing only a portion of the broader granodiorite contact zone, the size and scale of this resource gives us more confidence that King of the Hills can ultimately support a large-scale bulk mining operation," he said.

"Given the strength of this early result, we're now underway with preliminary studies to assess the merits of a standalone mining and processing operation."

Red 5 LimitedABN 73 068 647 610ASX: REDShares on issue: 1,242MLevel 2, 35 Ventnor Avenue West Perth 6005 Western AustraliaTel: (+61) 8 9322 4455Fax: (+61) 8 9481 5950Web: www.red5limited.comInvestor enquiries: info@red5limited.com

BULK CONTACT CONCEPT AND IMPLICATIONS FOR KOTH

The discovery of a zone of high-grade veins and stockworks along the Eastern Margin Contact between the granodiorite intrusion and the surrounding ultramafics at KOTH, which bulk out to significant widths, creates the potential for open pit and/or bulk underground stoping methods (i.e. larger-scale long-hole open stoping to sub-level caving). Along this contact there is a variable width 'damage zone', spanning both the granodiorite and the ultramafics, where tension cracks appear approximately perpendicular to the contact, with a reasonable proportion of these tension cracks containing gold mineralisation.

Importantly, this gold mineralisation occurs within both small veinlets, as well as larger more visible veins. When bulked out, these stockworks of veinlets contain additional gold that enhances the grade of the bulk material.

Of immediate benefit to the existing 'Haul to Darlot' business model is the fact that the bulk stopes are wider, the performance of the stope is more predictable and is expected to provide easier-to-mine ounces and lower per tonne mining costs.

INITIAL 1.9MOZ RESOURCE FOR EASTERN MARGIN CONTACT

Table 1 – King of the Hills Resource as at December 2018

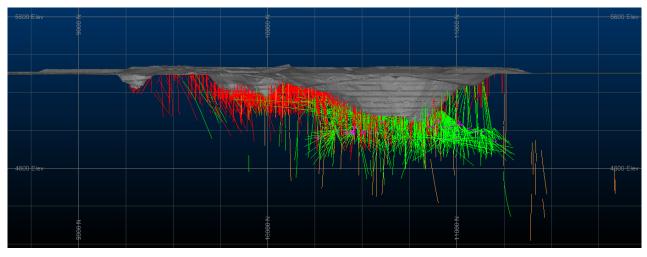
KOTH Mineral Resource as at December 2018					
Estimate	Classification	Cut Off Au (g/t)	Tonnes (Mt)	Au (g/t)	Contained Au (koz)
December 2018	Indicated	1.0	4.2	3.9	540
JORC 2012	Inferred	1.0	24.5	1.7	1,340
(HGV & Bulk Model)	Total	1.0	28.7	2.0	1,880
August 2018	Indicated	2.0	2.5	5.3	432
JORC 2012 (HGV Model)	Inferred	2.0	1.4	5.2	226
	Total	2.0	3.9	5.3	658
	Indicated		1.7	-1.4	108
Difference	Inferred		23.1	-3.5	1,114
	Total		24.8	-3.3	1,222

Notes on KOTH JORC 2012 Mineral Resources

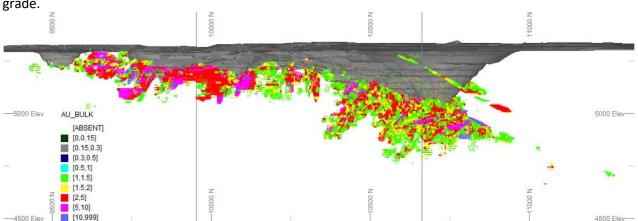
- 1. Mineral Resources are quoted as inclusive of Ore Reserves.
- 2. Discrepancy in summation may occur due to rounding.
- 3. The figures take into account mining depletion up to 12 November 2018.
- 4. Cut off at 1.0 g/t determined based on estimated grade cut off for large scale open stoping
- 5. Independent Audit has been conducted by Dr Spero Carras of Carras Mining Pty Ltd.
- 6. Refer to Appendix 1 for JORC 2012 Table 1, sections 1 to 3.
- 7. August 2018 KOTH resource estimate (refer to ASX announcement dated 2 August 2018 for JORC 2012 Table 1).

Red 5 Limited ("Red 5" or "the Company") (ASX: RED) is pleased to report a bulk mining Mineral Resource estimate for the King of the Hills (KOTH) gold mine, located in the Eastern Goldfields region of Western Australia, comprising 28.7 million tonnes grading 2.0g/t Au for an estimated 1.88 million ounces of contained gold at a 1.0g/t Au cut-off.

The Indicated and Inferred Mineral Resource estimate has been calculated over an area of the granodiorite/ultramafic Eastern Margin Contact at KOTH, where Red 5 has recently reported the discovery of a large zone of high-grade veins and stockworks which offer the potential for a future bulk mining operation (see ASX announcements dated 21 September 2018, 8 November 2018 and 15 November 2018).



The updated Resource has been developed to demonstrate proof-of-concept of this bulk mining opportunity by modelling of the gold-bearing vein stockworks between the high-grade veins identified in previous drilling by past owners.


The Resource is based on an area of the granodiorite contact zone measuring 2,200m along the strike of the Eastern Margin Contact to a depth below the base of the current open pit, of 130m in the south and 300m in the north. Current drilling shows that the mineralisation is not closed off and continues down-dip and along strike.

Recent geological modelling at KOTH indicates that the granodiorite unit, although not outcropping, extends over an area measuring ~4,000m long x 1,800m wide and potentially +500m below surface, indicating significant potential to continue to grow the Resource through additional drilling along the eastern contact.

The updated model, which has also been independently reviewed by Dr Spero Carras of Carras Mining Pty Ltd (CMPL), has confirmed the model figures are reasonable for reporting an Indicated and Inferred Resource.

Figure 1 – KOTH drilling in long section. Green shows Diamond Drilling (DD) and red shows Reverse Circulation (RC) drilling. The deeper brown holes were started as RC and completed as DD.

If a large open pit is determined to be economic, the Resource could be reported at a lower Au cut-off grade.

Figure 2 – Long section of KOTH bulk mining resource showing 1g/t Au cut-off for Indicated and Inferred material.

All the drilling completed to date along the eastern contact and the down-dip portion at the northern part of the granodiorite and ultramafic contact vindicates the Company's view that the mineralisation remains open down-dip and along strike in both directions.

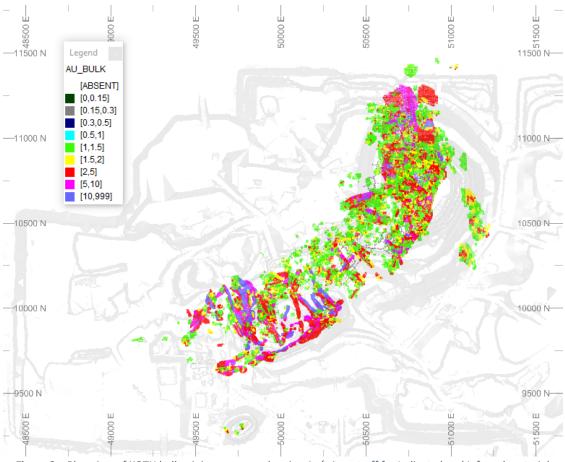


Figure 3 – Plan view of KOTH bulk mining resource showing 1g/t Au cut-off for Indicated and Inferred material.

Lemonwood Bulk Stope

The Lemonwood high-grade vein stope mined by a former owner is located immediately to the south of the Lemonwood Bulk Stope (Figure 4, which is expected to deliver an estimated **32,000t at 3.4g/t Au** from a block measuring 45m long x 18m high x 15m wide. This bulk stope would have been larger if the high-grade vein previously extracted was still present.

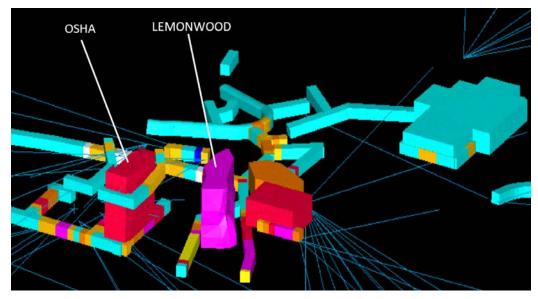


Figure 4: Lemonwood bulk stope

PHASE 1 – UPGRADING OF THE INITIAL BULK MINING MINERAL RESOURCE OF 1.9Moz

Red 5 has commenced a 30,000m underground drill program scheduled for completion in the June 2019 quarter, as announced on 8 November 2018.

A significant proportion of the program is designed to target the stockwork development around the granodiorite/ultramafic contact, referred to as the "damage zone", and will cover an initial area beneath the historical Tarmoola open pit, in an area close to existing underground mining development.

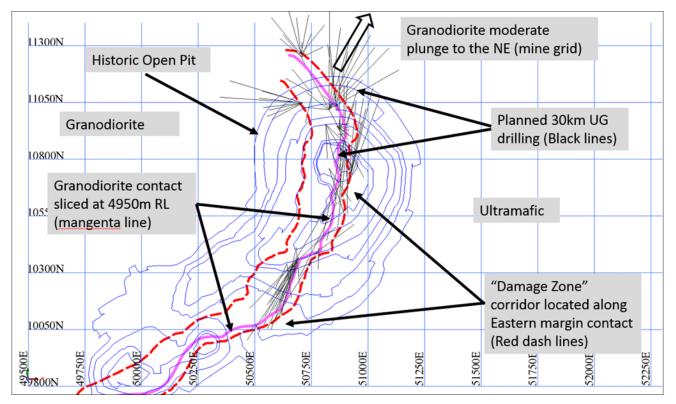
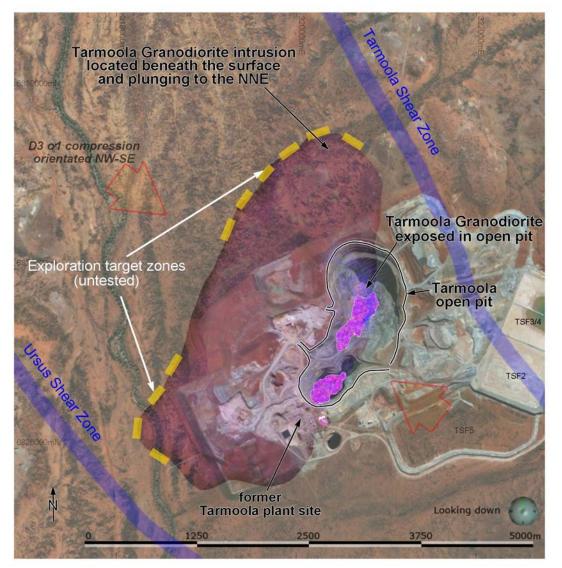


Figure 5: Plan of the damage zone either side of the contact and the 30,000m or planned drilling

PHASE 2 - EXPLORATION TO INCREASE RESOURCE IN TOTAL TONNAGE AND POTENTIALLY GRADE

The granodiorite/ultramafic contact zone has the potential to host gold mineralisation outside the existing mine area, with the most prospective areas determined by the stress regime developed by the Tarmoola and Ursus shears against the granodiorite when these significant structures were active.


The 1.9Moz Resource is located below the existing open pit (Figure 6). Reprocessing of historical 2D seismic data and compilation of a gravity inversion model are currently underway to better define the depth and geometry of the Western Margin Contact.

NW corner of granodiorite contact

The highest-priority target for Resource extensions is in the north-west corner of the granodiorite contact (represented by the dotted yellow line at the top of Figure 6).

The Tarmoola and Ursus shears are believed to be the main conduit for the mineralising fluids to ingress along the contact, and the proximity of this part of the contact to the Tarmoola Shear is interpreted to be highly prospective. The northern 'nose' of the granodiorite rolls over and plunges to depth adjacent to the shear, providing a large surface that has the potential to be highly mineralised. The extent of the granodiorite intrusion is currently defined by a number of historical drill holes drilled into the granodiorite to the north, west and south, along with historical gravity survey results. Drilling to the north suggests mineralisation still occurs at the contact with drilling to the south showing anomalous gold values within the granodiorite.

Figure 6: Priority exploration targets highlighted as dashed yellow lines. The translucent maroon is the interpreted granodiorite pluton. The major Tarmoola & Ursus shear zones (blue) are believed to be the major conduits for the ingress of mineralising fluids

The northernmost part of the KOTH underground mine has been mining the contact for some time using narrow vein 'airleg' techniques, with positive indications that this area could be bulk mined. Drilling is currently underway to test for mineralisation below current working areas.

Additional target areas include:

- Below Bulk Resource under southern end of open pit A significant Resource has now been established in the southern two-thirds of the contact and inside the granodiorite (Figures 2 and 3). This Resource has currently only been reported at the higher (1.0g/t Au) cut-off suitable for bulk underground mining, but its proximity to surface creates potential for surface mining. Depth extensions within this region also represent a significant target.
- Southern end of contact adjacent to Ursus Shear Potential for Resource extensions also exists at the southern end of the granodiorite, adjacent to the Ursus Shear. The Ursus Shear is host to a number of relatively recent discoveries to the north and south of KOTH. The shear zone has only been partially tested by drilling with reconnaissance drill lines up to 800 m apart. Prospects such as Cerebes, Centauri and Eclipse remain to be followed up with drilling.

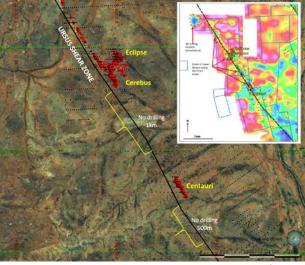


Figure 7: Regional exploration targets to the south of KOTH

Figure 8: Regional exploration targets to the north of KOTH

PHASE 3 – STRATEGIC REVIEW TO DIMENSION DEVELOPMENT OPPORTUNITIES

KOTH ore has previously been processed on-site through the historical 3.3Mtpa Tarmoola Mill, operating with several processing upgrades, from ca 1987 through to 2004. This creates a number of positive factors when considering the potential to become a standalone operation including:

- An existing borefield with more than sufficient water of suitable quality to operate a similar sized processing plant;
- Tailings storage facilities;
- Offices, and recently upgraded communications, mobile and fast internet coverage, power reticulation fuel farm;
- o 8km access road from the Goldfields Highway;
- o 30km from Leonora town and airport; and
- Permitted mining site.

Conceptual Processing Plant

Red 5 has engaged Mintrex Engineering and Consultancy to complete a preliminary scoping study to evaluate the suitability, cost and next steps required to construct a standalone process plant at KOTH. The study concluded that the plant site, including extensive offices, workshops and other infrastructure which remains intact could be used to support a new processing facility. The significant infrastructure remaining on site which can be readily recommissioned to support a new process plant includes:

o Borefield and water facilities

The site has an existing borefield in close proximity to the site with approximately 20 bores in total. Water abstraction and underground dewatering licences are already in place and provide more than enough supply for a new process plant. Three bores are currently in service supplying the current underground and offices, although extensive reticulation and piping remains intact for all the other bores. The site also retains a large fully lined process water pond, a raw water storage pit, several raw water tanks and a potable water RO plant, all located adjacent to the plant site.

o Tails Storage Facilities

The tails storage facility (TSF) used at the time Tarmoola ceased operations is still permitted and active and is currently used to discharge excess mine dewatering. TSF#4 consists of two cells with approximately 2Mt of remaining capacity. The southern cell had only recently been raised prior to the plant shutdown in 2004 and has not been used. There is also potential for further raisings of the current TSF#4 cells to extend their capacity past 2Mt. Prior to closing, the site had also initiated plans for a new TSF#5 located adjacent to TSF#4 to the south and had commenced construction on the starter embankment and decant facilities. This dam has a final design capacity in excess of 20Mt and was to see out the remaining mine life, as determined by a previous operator.

Support Infrastructure

The plant site retains a full complement of modern offices buildings, including first aid/medical, ERT, stores warehouse, maintenance workshops and reagent storage and core sheds. The mining area contains active heavy and light vehicle workshops, along with HV fuel farm and ancillary facilities servicing the underground. The site remains fully serviced with water, power and recently upgraded communications, including mobile coverage and fast data and internet link through GoldNet.

Plate 1: Existing administrative and Geological infrastructure at KOTH

Plate 2: Existing process plant infrastructure at KOTH

Plate 3: An overview of KOTH site location and facilities and location of the former 3.3Mtpa processing plant

18079-00-SK-001_JS.dgn Mintrex Drawing Border File 27/11/2018 1:56:39 PM Plotted to A3 PDF by nngo

Plate 4: Aerial view of the layout of the former 3.3Mtpa processing plant

MANAGEMENT COMMENT

Red 5 Managing Director, Mark Williams, said:

"This initial bulk resource at King of the Hills is a game-changer for Red 5. Based on the drilling completed to date and assessing only a portion of the broader granodiorite contact zone, the size and scale of this resource gives us more confidence that King of the Hills can ultimately support a large-scale bulk mining operation," he said.

"Given the strength of this early result, we're now underway with preliminary studies to assess the merits of constructing a processing plant at King of the Hills to establish this mine as a standalone mining and processing operation."

"In addition, we have multiple high-priority targets along the contact zone that offer strong potential to rapidly expand this Resource. These targets will be assessed along with the recently-commenced 30,000m drilling program, with additional surface drilling on the high priority north-western corner of the contact."

"The 30,000m drilling will continue throughout the first half of next year, with results to feed into the strategic review targeted for completion by mid-year," he continued.

Summary of King of the Hills Mineral Resource Estimate update December 2018

Geology and Geological Interpretation

The King of the Hills (KOTH) domains are hosted by a large trondhjemite granite pluton with overlying ultramafic and mafic sequences that are strongly foliated. The northeast-trending granite pluton is bounded by two major northeast-dipping structures, the Ursus and Tarmoola Faults, which extend off the Poker Fault to the south. The Poker Fault wraps around the Raeside Batholith and represents a major extensional shear zone that formed during an early period of extension and exhumation of the Batholith. Mineralisation at KOTH is likely associated with reactivation of these structures during subsequent eastwest directed compression.

Gold mineralisation is identified within sheeted quartz vein sets within pervasively carbonated altered ultramafic rocks (UAC) and a hosting granodiorite stock. Gold appears as free particles or associated with traces of base metal sulphides within quartz and is intergrown with galena, chalcopyrite and pyrite along late-stage fractures. Potassic alteration in the form of sericite is occasionally associated with mineralisation within the granite, whilst fuchsite is often present in mineralised parts of the UAC.

Brittle fracturing along the granodiorite contact generated radial tension veins, perpendicular to the orientation of the granodiorite, and zones of quartz stockwork. These stockwork zones are seen in both the granodiorite and ultramafic units and contain mineralisation outside the previously modelled continuous vein system.

A Global Mineral Resource model has been prepared for the purposes of this announcement, with updates to the geological interpretation of fifteen high grade vein (HGV) domains and the generation of a large bulk domain capturing mineralisation outside the modelled HGV domains. Three HGV domains have been removed based on lack of geological continuity identified through recent drilling. The updated interpretations supporting the geological models are predominantly based upon drill-hole samples, geological mapping and sampling from the development drives and airleg stoping and a minimum mining width of 1 meter.

Drilling Techniques

A total of 1,146 diamond drill (DD) holes (173,342m), 69 holes; Reverse Circulation collars with diamond core tails (RCD) (16,404m), 4601 Reverse Circulation drill holes (427,453m), and 786 face samples (2,553m) support the Mineral Resource. Drilling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drillholes (DD) and face chip sampling. Red 5 has contributed 122 diamond drillholes totaling 18,113m. Of these 122 diamond drillholes, 67 diamond drillholes totaling 10,636m have been included since the June 2018 Resource Model. 485 Rotary Air Blast (RAB) drill holes (9,580m) were used to assist in interpretations.

Sampling and Sub-Sampling Techniques

DD core sample lengths can be variable in a mineralised zone, though usually no larger than one-meter. Drilling by Red 5 has been completed at a core diameter of NQ2 with historical surface DD generally at NQ2 or HQ, while underground DD was usually NQ2 or LTK60.

DD samples have been geotechnically and geologically logged and sample recoveries calculated. Where possible, half core sampling is complete with samples bagged and dispatched to the analytical laboratory.

Underground face sampling was carried out by geologist painting a sample line, where possible, perpendicular to the orientation of the mineralized zone. Where this was not practical a horizontal channel at grade height (1.5m from floor) was samples according to geological intervals.

Sample Analysis Method

Primary assaying of DD and face samples is undertaken by ALS Kalgoorlie. Analysis is by 50g fire assay (FA) with Atomic Absorption Spectrometer (AAS) finish to 0.01 g/t detection limit. Historically, core samples were taken on a 40g sub sample for analysis by FA/AAS

Estimation Methodology

All geological interpretations were prepared in King of the Hills Mine Grid. Geological interpretations are based upon underground mapping, geological logs (all sample data), and gold assays with the update interpretations also constrained but a minimum width of 1m. Individual geological models were assigned a domain code as a unique identifier, while multiple domains were grouped into domain groups based on geological conditions; ore control, orientation and spatial position within the deposit. A bulk domain was generated to capture the interpreted stockwork style mineralization outside the modelled high-grade vein (HGV) domains. Zones of increased data density within the bulk domain were modelled as two sub-domains improving geological confidence. Late stage intermediate dolerite dykes (IDD) cross-cut some of the domains and deplete the Mineral Resource. These IDD domains have been estimated.

Sample data was composited to 1m intervals within the HGV domains and 4m within the Bulk Domain and corresponding two subdomains, top cuts were then applied to high gold grades. Top-cut values where determined using statistical methods; quantiles, log histograms and log probability plots for each domain group. Ordinary Kriging (OK) was the primary estimation method for 118 domains while Inverse Distance Squared (ID2) was utilised for 39 domains where the data population was insufficient for conclusive variography. The inverse distance squared estimation was also completed in conjunction with OK across all domain groups and allowed additional validation of the final OK model. An average density for each domain was assigned based on historical data. Validation of the global model was completed to ensure blocks were correctly coded for geological domains, and the estimated gold grades honored the surrounding drill assay data.

Cut-off Grades

All geological interpretations associated with the high-grade vein component of the model were completed based on grade, lithology and, where necessary, a minimum width of 1m, and are treated as hard boundaries. For the bulk components domains 996 and 997 where broadly defined by sub grade gold values to contain over spreading of grade. The bulk domain 998 no grade cut was used and was treated as a broad shell to capture the mineralized drilling outside the domains 996 and 997 and the high grade veins. The Mineral Resources are reported above a cut-off grade of 1.0g/t using a gold price of AUD1,800/oz. Refer to appended JORC 2012 Table 1 for additional information.

Classification

The Mineral Resource model is classified as a combination of Indicated, Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For the HGV domains the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153, the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Bulk Domain and DMIN domain code 153 the classification of Inferred Resources; an average sampling distance within 45m and within the first two search passes was required. For the Bulk Sub Domains, the classification of Indicated Resources; defined by an internal wireframe based on a nominal 15m by 15m diamond drill hole spacing, stockwork mineralization exposure in underground development extending 100m in both a north-south and east-west (mine grid) direction at 4950mRL and includes eighteen holes orientated perpendicular to the granodiorite/ultramafic contact increasing the geological confidence in this zone. For the Bulk Sub Domains, the classification of Inferred Resources; an average sampling distance within 45m was required. Where reduced support for internal mineralisation was identified this material was removed from the Internal zones in the Bulk and Sub Domains where the estimation occurred within the second and third pass were removed from the Indicated/Inferred classification based on a lack of support.

Other Material Modifying Factors

No significant amounts of deleterious elements have historically been encountered at King of the Hills or estimated in the King of the Hills Mineral Resource model, and hence have never been considered for estimation in the Mineral Resource. Pyrite does not occur in significant enough quantities to be considered for acid mine drainage (AMD) considerations.

ENDS

For more information:

Investors/Shareholders:

Mark Williams, Managing Director John Tasovac, Chief Financial Officer Red 5 Limited Telephone: +61 8 9322 4455

Competent Person's Statement

Mineral Resource

Mr Byron Dumpleton, confirms that he is the Competent Person for the Mineral Resources summarised in this report and Mr Dumpleton has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Dumpleton is a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in this report and to the activity for which he is accepting responsibility. Mr Dumpleton is a Member of the Australian Institute of Geoscientists, No. 1598. Mr Dumpleton is a full time employee of Red 5 Limited. Mr Dumpleton has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

Independent Auditor

The King of the Hills Resource Model has been independently reviewed and audited by Dr Spero Carras of Carras Mining Pty Ltd. Dr Carras is a Fellow of the Australasian Institute of Mining & Metallurgy (Membership No: 107972) and has more than 40 years of experience which is relevant to the style of gold mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Auditor of the Resource as reported. Dr Carras is a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Carras has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

Forward-Looking Statements

Certain statements made during or in connection with this statement contain or comprise certain forward-looking statements regarding Red 5's Mineral Resources and Reserves, exploration operations, project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Red 5 believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward looking statements and no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in metals prices and exchange rates and business and operational risk management. Except for statutory liability which cannot be excluded, each of Red 5, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this statement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this statement or any error or omission. Red 5 undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly you should not place undue reliance on any forward looking statement.

Media: Nicholas Read Read Corporate Tel: +61-8 9388 1474

Appendix 1

JORC Code, 2012 Edition – Table 1 for the King of the Hill Resource update

Section 1: Sampling	Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary		
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 Sampling activities conducted at King of the Hills by Red 5 include underground diamond core drilling (DD) and underground face chip sampling. Sampling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drillholes (DD) and face chip sampling. 		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	 Sampling for DD and face chip sampling is carried out as specified within Red 5 sampling and QAQC procedures as per industry standard. Certified blank material was inserted into the sampling sequence after samples where coarse gold was expected. Barren flushes were completed during the sample preparation after the suspected coarse gold samples. The barren flush is analysed for gold to quantify gold smearing in the milling process. Certified standard material was inserted into the sampling sequence every 20 samples to ensure calibration was occurring in the assaying process. Core samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 50g sub sample for analysis by FA/AAS. Historically, core samples were taken on a 40g sub sample for analysis by FA/AAS. RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (ca 1984-2017). 		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 All DD core is logged for core loss (and recorded as such), marked into 1m intervals, orientated, geologically and structurally logged for the following parameters: rock type, alteration and mineralisation. 2018 DD sampling has been half cut sampled to a minimum of 0.2m and a maximum of 1.2m to provide a sample >0.5kg. The second half of the core is stored in the core farm for reference. All historic RAB, RC, AC and DD and sampling is assumed to have been carried out to industry standard at that time. The majority of the recent historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis via fire assay and atomic absorption spectroscopy. Historical analysis methods include fire assay, aqua regia and unknown methods. 		
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 The number of holes intersecting the current resource is 6301 holes amounting to 626,779m. The holes include both RC and Diamond holes. RC drilling is mainly concentrated in the upper parts of the deposit, while diamond drilling is mainly concentrated in the deeper levels. Overall there are 4,601 reverse circulation holes, 69 reverse circulation with diamond tail holes, 485 rotary air blast (RAB) holes, and 1,146 Diamond core holes intersecting the wireframes within the Mineral Resource. Red 5 has completed 67 NQ2 underground diamond drill holes since the June 2018 Resource amounting to 10,636 downhole meters and sampled underground faces. 		
Drill Sample Recovery	Method of recording and assessing core and chip	• Drill sample recoveries are recorded for each sample number and stored in the Red 5 central database.		

Section 1: Sampling		
Criteria	JORC Code Explanation	Commentary
	sample recoveries and results assessed	 Sample recoveries calculated. Core recovery factors for core drilling are generally very high typically in excess of 95% recovery. It has been noted that recoveries for historic diamond drilling were rarely less than 100% although recovery data has not been provided. Minor core loss was most likely due to drilling conditions and not ground conditions. Rock chip samples, taken by the geologist underground, do not have sample recovery issues.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	 Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on the core blocks. UG faces are sampled left to right/bottom to top across the face allowing a representative sample to be taken. It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 There is no known relationship between sample recovery and grade. Diamond drilling has high recoveries due to the competent nature of the ground meaning loss of material is minimal. Any historical relationship is not known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Logging of diamond drill core has recorded lithology, mineralogy, texture, mineralisation, weathering, alteration and veining. Geological logging protocols at the time of drilling were followed to ensure consistency in drill logs between the geological staff. Geotechnical and structural logging is carried out on all diamond core holes to record recovery, RQD, defect number, type, fill material, shape and roughness and alpha and beta angles. With the recent drilling, 100% of core is logged and photographed. Underground faces are photographed and mapped. Qualitative and quantitative logging of historic data varies in its completeness. Some diamond drilling has been geotechnically logged to provide data for geotechnical studies. Some historic diamond core photography has been preserved.
	The total length and percentage of the relevant intersections logged	 All diamond drillholes are logged in full and underground faces are mapped. Historic logging varies in its completeness.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 DD core sample lengths can be variable in a mineralized zone, through usually no larger than 1.2 meters. Minimum sample is 0.2 metres. This enables the capture of assay data for narrow structures and localized grade variations. DD samples are taken according to a cut sheet compiled by the Geologist. Core samples are bagged in prenumbered calico bags and submitted with a sample submission form. All diamond core is cut in half onsite using an automatic core saw by a geology field assistant. Samples are always collected from the same side.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Various sampling methods for historic RAB, AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split. UG faces are chip sampled using a hammer. It is unknown if wet sampling was carried out previously.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• The sample preparation of diamond core and UG face chips adhere to industry best practice. It is conducted by a commercial laboratory and involves oven drying at 105°C, jaw crushing to 12mm then total grinding using an LM5 to a grind size of 90% passing 75 microns. Best practice is assumed at the time of historic sampling.

Criteria	JORC Code Explanation	Commentary
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	• All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory. Best practice is assumed at the time of historic RAB, DD, AC and RC sampling.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	 Some duplicate sampling was performed on historic RAB, RC, AC and DD drilling. No duplicates have been taken of UG diamond core, Field duplicates are taken routinely UG when sampling the ore structures.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of data determined sample sizes were considered to be appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Primary assaying for the DD samples has been undertaken by ALS Kalgoorlie. A 50 gram fire assay with AAS finish is used to determine the gold concentration for UG diamond core and face chip samples. This method is considered one of the most suitable for determining gold concentrations in rock and is a total digest method. Given the occurrence of coarse gold, Screen Fire Assays (SFA) checks are periodically undertaken. Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods. Umpire analyses were undertaken at Independent Assay Laboratories (IAL) for selected samples comprising a 100 sample batch. Results show a reasonable correlation with the original samples, with differences largely attributed to nugget effects.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised at the King of the Hills project
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results (a result outside of expected tolerance limits – 2 standard deviations) and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified reference material (standards and blanks) with a wide range of values are inserted into all diamond drillhole submissions 1 in 20 and UG face job to assess laboratory accuracy and precision and possible contamination. These are not identifiable to the laboratory. Certified blank material is inserted under the control of the geologist and are inserted at a minimum of one
		 Per batch. Barren quartz flushes are inserted between expected mineralised sample interval(s) when pulverising. QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. QAQC data validation is routinely completed and demonstrates sufficient levels of accuracy and precision. Sample preparation checks for fineness are carried out to ensure a grind size of 90% passing 75 microns. The laboratory performs several internal processes including standards, blanks, repeats and checks. Industry best practice is assumed for previous holders. Historic QAQC data is stored in the database but not reviewed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	 If core samples with significant intersections are logged then Senior Geological personnel are likely to review and confirm the results. No specific twinned holes have been drilled at King of the Hills but underground diamond drilling has

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
		confirmed the width and grade of previous exploration drilling.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	 Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server. Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal
		 validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. All exploration data control is managed centrally, from drillhole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules.
	Discuss any adjustment to assay data.	 The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. No adjustments have been made to assay data. First gold assay is utilised for resource estimation. Reassays carried out due to failed QAQC will replace original results, though both are stored in the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drillhole collars are marked out pre-drilling and picked up by company surveyors using a total station, various models have been used over the years with an expected accuracy of +/-2mm. Underground faces are located using a Leica D5 disto with and accuracy of +/- 1mm from a known survey point. Historic drilling was located using mine surveyors and standard survey equipment; more recent surface drilling has been surveyed using a DGPS system. Surveys are carried out every 15-30m downhole during diamond drilling using an Eastman single shot camera, with the entire hole being surveyed using a deviflex rapid tool upon completion. The majority of downhole surveys for historic RAB, RC, AC and DD drilling are estimates only. More recent (post 1990) drilling has been surveyed with downhole survey tools at regular intervals including DEMS, gyroscope and camera. Underground voids are surveyed by mine surveyors. The survey control on these voids is considered adequate to support the drill and mine planning.
	Specification of the grid system used.	 A local grid system (King of the Hills) is used. It is rotated 25.89 degrees anticlockwise from MGA_GDA94. The two point conversion to MGA_GDA94 zone 51 is KOTH_East KOTH_North RL MGA_East MGA_North RL Point 1 49823.541 9992.582 0 320153.794 6826726.962 0 Point 2 50740.947 10246.724 0 320868.033 6827356.243 0 Historic data is converted to King of the Hills local grid on export from the database.
	Quality and adequacy of topographic control.	DGPS survey has been used to establish a topographic surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The nominal drill spacing is 20m x 20m with some areas of the deposit at 80m x 80m or greater. This spacing includes data that has been verified from previous exploration activities on the project.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and	 Level development is 15-25 meters between levels and face sampling is 2m to 10m spacing. This close spaced production data provides insights into the geological and grade continuity and forms the basis of exploration drill spacing. The Competent Person considers the data spacing to be sufficient to establish the degree of geological and
	classifications applied.	grade continuity appropriate for future Mineral Resource classification categories adopted for KotH.

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	 Underground core and faces are sampled to geological intervals; compositing is not applied until the estimation stage. Samples were composited to two fundamental lengths; 1m and 4m. The 1m composite length has been used in the evaluation of the High Grade Vein (HGV) domains and the 4m composite length has been used to evaluate the bulk domains. Some historic RAB and AC drilling was sampled with 3-4m composite samples. Anomalous zones were resampled at 1m intervals in some cases; it is unknown at what threshold this occurred.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• Sampling of the (HGV) domains has been conducted in most cases perpendicular to the lode orientations where the mineralisation controls are well understood. The space between the HGV consists of stockwork mineralisation (bulk domain) where the predominant mineralisation trend is orthogonal to the current drilling orientation. It is possible, where mineralisation controls are not well understood and the interpretation of the stockwork mineralisation aligns with drilling, mineralisation in this deposit has not been optimally intersected.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling is designed to cross the ore structures close to perpendicular as practicable. There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures.
Sample security	The measures taken to ensure sample security.	 Recent samples are prepared on site under supervision of geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into larger secured bags and delivered to the laboratory by a transport company. All King of the Hill samples are submitted to ALS laboratory in Kalgoorlie. Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access. Although security in not strongly enforced, KOTH is a remote site and the number of outside visitors is minimal. The deposit is known to contain visible gold and this renders the core susceptible to theft, however the risk of sample tampering is considered low.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 A series of written standard procedures exists for sampling and core cutting at KOTH. Periodic routine visits to drill rigs and the core farm are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse or eroneous findings, and any minor deficiencies were noted and corrected, and staff notified, with remedial training if required. No external audits or reviews have been conducted.

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The King of the Hill pit and near mine exploration are located on M37/67, M37/76, M37/90, M37/201 and M37/248 which expire between 2028 and 2031. All mining leases have a 21 year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited. The mining leases are subject to a 1.5% 'IRC' royalty. Mining leases M37/67, M37/76, M37/201 and M37/248 are subject to a mortgage with 'PT Limited'. All gold production is subject to a Western Australian state government royalty of 2.5%. All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF. There are currently no native title claims applied for or determined across these mining leases. However, an agreement for Heritage Protection between St Barbara Mines Ltd and the Wutha People still applies. Lodged aboriginal heritage site (Place ID: 1741), which is an Other Heritage Place referred to as the "Lake Raeside/Sullivan Creek" site, is located in M37/90.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The tenements are in good standing and the license to operate already exists. There are no known impediments to obtaining licences to operate in the project area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The King of the Hills prospect was mined sporadically from 1898-1918. Modern exploration in the Leonora area was triggered by the discovery of the Habour Lights and Tower Hill prospects in the early 1980s, with regional mapping indicating the King of the Hills prospect area was worthy of further investigation. Various companies (Esso, Ananconda, BP Minerals. Kulim) carried out sampling, mapping and drilling activities delineating gold mineralisation. Kulim mined two small open pits in JV with Sons of Gwalia during 1986 and 1987. Arboynne took over Kulim's interest and outlined a new resource while Mount Edon carried out exploration on the surrounding tenements. Mining commenced but problems lead to Mount Edon acquiring the whole project area from Kulim, leading to the integration of the King of the Hills, KOTH West and KOTH Extended into the Tarmoola Project. Pacmin bought out Mount Edon and were subsequently taken over by Sons of Gwalia. St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the name given to the underground mine which St Barbara developed beneath the Tarmoola pit. St Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine. In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen.
Geology	Deposit type, geological setting and style of mineralisation.	 The KOTH lodes are considered to be part of an Archean hydrothermal fault-vein deposit with many similar characteristics with other deposits within the Yilgarn Craton, namely host rock type and nature of hydrothermal alteration. Gold mineralisation is associated with sheeted quartz vein sets within a hosting granodiorite stock and pervasively carbonate altered ultramafic rocks. Mineralisation is thought to have occurred within a brittle/ductile shear zone with the main thrust shear zone forming the primary conduit for the mineralising fluids. Pre-existing quartz veining and brittle fracturing of the granite created a network of second order conduits for mineralising fluids. Brittle fracturing along the granodiorite contact generated radial tension veins, perpendicular to the orientation of the granodiorite, and zones of quartz stockwork. These stockwork zones are seen in both the granodiorite and ultramafic units and contain mineralisation outside the previously modelled continuous vein

Criteria	JORC Code Explanation	Commentary		
		 system. Gold appears as free particles or associated with traces of base metals sulphides (galena, chalcopyrite, pyrite) intergrown within quartz along late stage fractures. 		
Drillhole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A total of 6,301 holes have been used in the mineral resource and are deemed to be material. It is not practical to summarise all the holes here in this release. Red 5 Limited drillhole collar locations, azimuth and drill hole dip and significant assays are reported in the tables after this document, for holes drilled since the June 2018 Resource Model. (Table 1. KoTH drill hole collar locations reported for this announcement (Data reported in Mine Grid) and Table 2. KoTH significant assays) Future drill hole data will be periodically released or when a result materially changes the economic value of the project. 		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Multiple domains were grouped into domain groups based on geological conditions; ore control, orientation and spatial position within the deposit. Top-cut values where determined using statistical methods on these domain groups based on; quantiles, log histograms and log probability plots for each domain group. Table below identifies the top-cut grades applied to each domain group for the HGV Domains and domain code for the Bulk Domains. 		
		3 60 9 90 10 80 13 100 14 65 138 100 153 100 201 90		
		202 60 203 65 204 100 207 100 208 100 210 60 211 60		
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such	 Exploration results have been calculated using weighted average length method. No grade cuts have been applied. Minimum value use is 0.5 g/t Au. Internal dilution up to 1m may be used. If a small zone of high grade is used this has been outlined in the comments section of the reported values. Note due to the type of mineralization high grade values are common over narrow intervals. 		

Criteria	JORC Code Explanation	Commentary
	aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 The geometry of the mineralisation is well known and true thickness can be calculated. Mineralisation at King of the Hills has been intersected in most cases where mineralisation controls are known, approximately perpendicular to the orientation of the mineralised lodes. For recent drilling targeting the bulk domain drill angles are approximately perpendicular to the predominant mineralisation orientation. Drill holes intersections vary due to infrastructure issues and drill rig access, but are at a high angle to each mineralised zone. Reported down hole intersections are documented as down hole width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in this release is an appropriately orientated longsection of the mineralisation, illustrating the centroids of the intercept point projected to a plane. • Diagram below: Plan view of the current KoTH UG workings (grey), Granodiorite contact at 4950mRL (pink) and the UG holes (blue) drilled at KoTH during FY18 Q4 and FY19 Q1:

Section 2: Rep	Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary	
		 Diagram below: Oblique view showing completed holes (blue) drilled during FY18 Q4 and FY19 Q1 with the current KoTH UG workings (grey) and the current interpreted HGV domains (red): 	

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		 Diagram below: Oblique long section (looking NW) showing the current KoTH Pit and UG workings (grey) and the current interpreted HGV domains (red):
		and the current interpreted HGV domains (red):

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		 Diagram below: Plan view showing the current KoTH Plt and UG workings (grey) and the current HGV and Interrediate Dolorite Dyke (IDD) Resource Model, Indicated and Inferred with Au >1.0g/t displayed as centroles: Image: Control of the current KoTH Plt and UG workings (grey) and the current Bulk provide the current Bulk bornain, Sub-Domain 1 and Sub-Domain 2 Resource Model, Indicated and Inferred with Au >1.0g/t displayed as centroles: Image: Control of the current Bulk provide the current

ria	JORC Code Explanation	Commentary
		 Diagram below: Oblique long section (looking NW) showing the current KoTH Pit and UG workin and the current HGV and IDD Resource Model, Indicated and Inferred with Au >1.0g/t displayed centroids:
		-450 Eller - 450 E
		and the current Bulk Domain, Sub-Domain 1 and Sub-Domain 2 Resource Model, Indicated and I
		Au >1.0g/t displayed as centroids (low-grade legend used):
		Au >1.0g/t displayed as centroids (low-grade legend used):
		Au >1.0g/t displayed as centroids (low-grade legend used):
		Au >1.0g/t displayed as centroids (low-grade legend used):
		Au >1.0g/t displayed as centroids (low-grade legend used):
		Au >1.0g/t displayed as centroids (low-grade legend used):

a	JORC Code Explanation	Commentary
		 Diagram below: Oblique long section (looking NE) showing the current KoTH Pit and UG workings and the current HGV and IDD Resource Model, Indicated and Inferred with Au >1.0g/t displayed a centroids:
		-200 Em
		AJ (Victory) (R 9.2 H) (R 9.2
		• Diagram below: Oblique long section (looking NE) showing the current KoTH Pit and UG workings and the current Bulk Domain, Sub-Domain 1 and Sub-Domain Resource Model, Indicated and Infer Au >1.0g/t displayed as centroids (low-grade legend use):
		-5000 Dev 5000 Dev- 40,BUX [A080H7] [0.153] [0.153] [0.53] [1.52]
		-4500 Elev

Section 2: Report	ting of Exploration Results					
Criteria	JORC Code Explanation	Commentary				
		• Diagram below: Oblique long section (looking NW) showing the current KoTH Pit and UG workings (grey) and the current HGV and IDD Resource Model, Indicated and Inferred with Au >1.0g/t displayed as centroids used; Indicate (2), Inferred (3):				
		-500 Eer 603 Eer-				
		• Diagram below: Oblique long section (looking NW) showing the current KoTH Pit and UG workings (grey) and the current Bulk Domain, Sub-Domain 1 and Sub-Domain 2 Resource Model, Indicated and Inferred with Au >1.0g/t displayed as centroids used; Indicate (2), Inferred (3):				
		1000 N 10				
		-500 Eer				
		Lugend RESOL				
		4 e 8001				
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All resulted have been reported in Table 2. KoTH significant assays (relative to the intersection criteria) including those results where no significant intercept was recorded. Exploration results reported are balanced with figures quoting down hole drill lengths and estimated true widths. Figures quoted are in targeted areas for mining narrow long hole open stoping methods and stockwork zones for bulk mining methods. Minimum planned stoping widths are between 1.0 to 1.5 metres. 				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results;	 Aerial photography, geotechnical drilling, petrological studies, ground magnetics, metallurgical test-work and whole rock geochemistry have been completed by various companies over the history of the deposit. Seismic and gravity surveys were carried out in 2003 and 2004 in an effort to identify controls on the 				

Section 2: Reporting of Exploration Results					
Criteria	JORC Code Explanation	Commentary			
	geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 mineralisation. Preliminary results indicated that the Tarmoola granite has a base and that mafics exist below this. The reporting was not completed due to Sons of Gwalia entering into administration. St Barbara completed an extended gravity survey from the previous one that was successful in delineating the granite/greenstone contact and mapped poorly tested extensions to known mineralised trends. No other exploration data that may have been collected historically is considered material to this announcement. 			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is currently reviewing the resource models and geology interpretations provided from the purchase of KoTH from Saracen with drilling currently design to test the next one to two year mine plan for UG. Red 5 are also designing drilling to test the interpreted low grade mineralization not publically reported and its potential for heap leaching. No diagrams have been issued to show the proposed drilling plans for the KoTH resource. 			

Section 3: Estimation and Reporting of Mineral Resources					
Criteria	JORC Code Explanation	Commentary			
Database Integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drillhole planning to final assay, survey and geological capture. Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. The Database Administrator imports assay and survey data (downhole and collar) from raw csv files. Data from previous owners was taken to be correct and valid. 			
	Data validation procedures used.	 The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. Validation of data included visual checks of hole traces, analytical and geological data. 			
Site Visits	<i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>	• The competent person together with Red 5 technical representatives did conduct site visits to the King of the Hill project. The Competent person has an appreciation of the King of the Hills deposit geology and the historical mining activities that occurred there.			
Geological Interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed and validated the historical interpretation of the King of the Hills deposit. This knowledge is based on extensive geological logging of drill core, RC chips, detailed open pit mapping and assay data. Mineralisation of HGV domains are defined by quartz veining, occurrence of sulphides (galena, chalcopyrite, and pyrite) and elevated gold grade (>0.5 g/t). Mineralisation of stockwork zones (bulk domain) are defined by stockwork quartz veining along the contact of the granodiorite/ultramafic and captures all drill intercepts in the deposit.			
	Nature of the data used and any assumptions made.	 The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration. Fifteen HGV domains were updated based on additional information (drillhole and face data). The remaining 139 domains within the deposit were not updated from the June 2018 Resource Model which includes 124 domains from Saracens latest review completed in October 2017 and assumed correct. Three domains were removed from the Resource due to a lack of geological continuity identified through recent drilling. Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built. 			
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	• Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.			
	The use of geology in guiding and controlling the Mineral Resource estimation.	• The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.			
	The factors affecting continuity both of grade and geology.	 The main factors affecting continuity are; Structurally offset quartz veining within the hosting granodiorite stock and the pervasively altered ultramafic rocks. Proximity to the granodiorite as mineralisation extends into the altered ultramafic rocks. 			

	on and Reporting of Mineral Resources	Commentant				
Criteria	JORC Code Explanation	 Commentary Potassic alteration in the form of sericite is occasionally associated with mineralisation within the granite whilst fuchsite is often present in mineralised parts of the ultramafic rocks. Orientation of tension vein arrays within the hosting granodiorite. These tension vein arrays within the central and southern portion of the mine may not necessarily be as continuous as modelled given the thickness of these veins, variability and fact most of these veins are modelled using RC data. These factors were used to aid the construction of the mineralisation domains. 				
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Western Flank mineralised zone strikes 30 degrees west of true north over a distance of 700m and plunges to the southwest. Individual lodes dip east at 35 to 45 degrees. Eastern Flank mineralisation strikes 30 degrees east of true north over a distance of 700m and is vertical. Stockwork mineralisation runs along the contact of the granodiorite/ultramafic contact which strikes 30 degrees east of true north over a distance of 4km and is vertical. Mineralisation has been tested to approximately 400m below surface and remains open. 				
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	• 118 domains were estimated using ordinary kriging and 39 domains estimated using Inverse Distance to the power of 2 on 10mE x 10mN x 10mRL parent blocks size. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of estimation and search parameters for bulk and sub domains are as follows				
		• Bulk sub domain1 – Rotation Azimuth = 169.81 degrees, Dip = 24.48 degrees, Pitch = -15.86 degrees. Max search distances (first search pass) = 15m. Min samples = 5, max samples = 10				
		• Bulk sub domain2 – Rotation Azimuth = 169.81 degrees, Dip = 24.48 degrees, Pitch = -15.86 degrees. Max search distances (first search pass) = 15m. Min samples = 5, max samples = 10				
		• Bulk domain – Rotation Azimuth = 169.81 degrees, Dip = 24.48 degrees, Pitch = -15.86 degrees. Max search distances (first search pass) = 15m. Min samples = 5, max samples = 10				
		Future adjustments to minimum and maximum samples may be changed with the completion of additional statistical reviews.				
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	• Ordinary Kriging (OK), Inverse Distance Squared (ID2) and Nearest Neighbour (NN) were completed on all domains as validation of the OK grades. Domain comparisons between the previous 2017 Saracen model and this model were completed.				
	The assumptions made regarding recovery of by- products.	 No assumptions have been made with respect to the recovery of by-products. 				
	Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulfur for acid mine drainage characterisation).	There has been no estimate at this point of deleterious elements.				
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 The resource used the parent block size of 10m(X) by 10m(Y) by 10m(Z). These were deemed appropriate for the majority of the resource, where drill spacing is in the order of 20m x 20m. Parent blocks in the HGV domains were sub-celled to 0.625m(X) by 0.625m(Y) by 0.625m(Z) and in the Bulk Domain were sub-celled to 1.25m(X) by 1.25m (Y) by 1.25m (Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity. 				

Section 3: Estimation and Reporting of Mineral Resources					
Criteria	JORC Code Explanation	Commentary			
		• Three search estimation runs are used with the aim to satisfy the minimum sample criteria in the first search range where possible.			
	Any assumptions behind modelling of selective mining units.	• The model has been sub-celled to reflect to the narrow veining with the updated domains modelled to a minimum width of 1m. Minimum stoping widths are planned at a minimum 1.2m – 1.5m. Legacy wireframes are still utilised in this resource estimate and have been modelled based on lithology, ore control, and not a minimum mining width.			
	Any assumptions about correlation between variables.	No assumptions have been made regarding correlation between variables.			
	Description of how the geological interpretation was used to control the resource estimates.	• The geological interpretation strongly correlates with the mineralised domains. Specifically, where the mineralised domain corresponds with quartz veining and data density (bulk domain). HGV wireframe boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced. When the lithology, veining, was less than one meter the updated domains were modelled to a one-meter minimum mining width, these hard boundaries were not honour in this instance. Bulk wireframe boundaries capture all drill intercepts within the deposit with sub-domains generated in areas of increase data-density improving geological confidence on the nature on mineralisation, stockwork, no hard boundaries enforced.			
	Discussion of basis for using or not using grade cutting or capping.	• Resource analysis indicated that statistically very few grades in the domain populations required top- cutting. Top-cuts were employed to eliminate the risk of overestimating in the local areas where a few high- grade samples existed.			
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Several key model validation steps have been taken to validate the resource estimate. The mineral resource model has been stepped through visually in sectional and plan view to appreciate the composite grades used in the estimate and the resultant block grades. This has also been carried out in 3D with the composite grades and a point cloud of the model grades. Northing, Easting and Elevation swathe plots have been constructed to evaluate the composited assay means against the mean block estimates. 			
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estimated on a dry basis.			
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	• The model is reported at a 1.0g/t Au cut-off and a gold price of A\$1,800/oz. Estimated mining cost of \$34/t, Processing cost of \$18/t and Administration cost of \$2.4/t were used to determine the cut off. These costs are estimates with a +/- 30% error margin			
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	• The mining method underground is open stoping and air leg room and pillar. Minimum height is approximately 3.8m with Jumbo development and 3.0m for air leg development with the resource reported on similar size panels to reflect this relationship.			

Section 3: Estimation and Reporting of Mineral Resources						
Criteria	JORC Code Explanation	Commentary				
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Based on historical mining at King of the Hills, gold recovery factors for oxide and transition ore average about 95% King of the Hills ore is currently being processed at Darlot Mining Operations with gold recoveries for fresh ore ranging between 93-94%. 				
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	• The project covers an area that has been previously impacted by mining. The tenement area includes existing ethnographic heritage sites. SBM undertook extensive Aboriginal Heritage Surveys within the tenements and the management measures implemented are still in place.				
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 The bulk densities, which were assigned to each domain in the resource model, are derived from over a thousand determinations which were carried out between 1994 and 2001 as part of routine Grade Control procedures. The bulk density values were determined from the previous Saracen 2017 Resource Model. Density ranges between 2.69g/cm3 and 2.80g/cm3 depending on lithology, alteration, and degree of weathering and oxidation. The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique as previously mentioned. 				
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	• An average mean of densities collected for each weathering profile material, fresh, transitional and oxide				
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as a combination of Indicated, Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For the HGV domains the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153, the classification of 				

Section 3: Estimation and Reporting of Mineral Resources					
Criteria	JORC Code Explanation	Commentary			
		 Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Bulk Domain and domain code 153 the classification of Inferred Resources; an average sampling distance within 45m and within the first two search passes was required. For the Bulk Sub Domains, the classification of Indicated Resources; defined by an internal wireframe based on a nominal 15m by 15m diamond drill hole spacing, stockwork mineralization exposure in underground development extending 100m in both a north-south and east-west (mine grid) direction at 4950mRL and includes eighteen holes orientated perpendicular to the granodiorite/ultramafic contact increasing the geological confidence in this zone. For the Bulk Sub Domains, the classification of Inferred Resources; an average sampling distance within 45m was required. Where reduced support for internal mineralisation was identified this material was removed from the Internal zones in the Bulk and Sub Domains where the estimation occurred within the second and third pass were removed from the Indicated/Inferred classification based on a lack of support. All other areas have been classified as Potential/Unclassified 			
	Whether appropriate account has been taken of all the relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the	 All care has been taken to account for relevant factors influencing the mineral resource estimate. This model has not been post-reconciled against historical production. The geological model and the mineral resource estimate reflect the competent person's view of the 			
Audits or reviews	<i>Competent Person's view of the deposit.</i> <i>The results of any audits or reviews of Mineral</i> <i>Resource estimates.</i>	 deposit. Internal reviews have been conducted by experienced Company technical personnel for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose, appropriate for the resource estimates has been completed on, and with no material errors or omissions. A Independent review of the resource modeling methodology and estimates has been completed by Dr Spero Carras of Carras Mining Pty Ltd (CMPL). The conclusion from the independent audit carried out by CMPL on the KoTH Project is that the assumptions used to produce the global Resource model are reasonable. 			
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	• The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model.			

Section 3: Estimation and Reporting of Mineral Resources				
Criteria	JORC Code Explanation	Commentary		
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statements relate to a global estimate of tonnes and grade.		

King of The Hills Gold Mine – Significant Assays for Underground Drilling

Drilling results since the announcement dated 2 August 2018 resource model update.

Table 1: KOTH drill hole collar locations reported for this announcement (Data reported in Mine Grid)

Holed ID	Easting (Mine Grid)	Northing (Mine Grid)	RL (Mine Grid)	Dip	Azimuth	Depth	Collar Location
KHRD0006	50557.344	10396.787	5095.930	13.04	5.60	324.30	E 5095 RAW
KHRD0007	50557.368	10396.518	5094.863	-9.64	5.60	229.90	E 5095 RAW
KHRD0010	50557.294	10396.693	5095.603	2.10	334.20	250.03	E 5095 RAW
KHRD0011	50556.926	10396.716	5096.072	18.07	354.80	197.00	E 5095 RAW
KHRD0013	50489.130	10712.478	5095.943	24.07	189.00	165.09	W 5095 SP3
KHRD0015	50483.920	10710.640	5096.550	16.17	207.00	266.10	W 5095 SP3
KHRD0032	50398.362	10326.762	5163.078	-3.68	166.90	197.50	Central Decline
KHRD0035	50680.073	10376.057	5001.594	-4.52	202.00	108.00	E 5005 SP
KHRD0037	50687.814	10410.732	5047.841	12.18	182.20	165.00	E 5050 ACC
KHRD0058	50778.673	10458.148	5024.585	-4.54	15.80	160.00	E 5050 ACC
KHRD0065	50724.827	11194.395	5009.193	-54.57	79.00	86.20	W 5000
KHRD0071	50765.900	10910.300	4959.300	-81.99	219.00	75.01	W DEC
KHRD0072	50765.900	10910.300	4959.300	-71.52	110.00	55.00	W DEC
KHRD0073	50765.340	10908.237	4959.517	-52.00	184.10	95.40	W DEC
KHRD0074	50765.242	10908.268	4959.481	-43.96	158.20	79.90	W DEC
KHRD0075	50771.373	10916.897	4960.004	-28.17	158.20	74.70	W DEC
KHRD0076	50770.814	10915.150	4959.678	-48.90	42.00	55.00	W DEC
KHRD0077	50509.584	10305.659	5104.869	11.12	359.00	145.00	C RAW SP
KHRD0078	50509.688	10305.635	5104.871	15.11	13.20	135.00	C RAW SP
KHRD0079	50509.760	10305.490	5105.460	-14.81	355.20	147.50	C RAW SP
KHRD0080	50509.816	10305.876	5103.771	-16.74	16.20	140.00	C RAW SP
KHRD0082	50486.175	10311.034	5104.820	11.50	292.00	284.00	C RAW SP
KHRD0083	50486.025	10311.010	5104.426	-6.93	301.00	135.03	C RAW SP
KHRD0084	50485.948	10310.946	5104.406	-11.50	275.00	185.00	C RAW SP
KHRD0085	50485.991	10310.831	5104.455	3.20	260.00	149.84	C RAW SP
KHRD0087	50653.748	10957.681	5006.442	30.11	239.20	56.66	W5005 KING SOD
KHRD0088	50653.281	10926.193	5003.476	30.02	204.00	45.00	W5005 KING SOD
KHRD0089	50457.146	10421.973	5115.857	-34.25	218.20	115.22	E5115 SP
KHRD0090	50457.050	10426.185	5115.542	-31.53	254.00	124.34	E5115 SP
KHRD0091	50457.455	10426.337	5115.611	-44.99	269.10	98.00	E5115 SP
KHRD0091	50457.386	10426.627	5115.624	-38.00	292.00	106.00	E5115 SP
KHRD0093	50456.998	10428.289	5115.938	-20.73	272.20	115.05	E5115 SP
KHRD0094	50457.545	10428.251	5115.935	-19.39	318.90	185.40	E5115 SP
KHRD0095	50897.374	10924.381	4951.390	-9.61	343.60	329.88	W4954 OD
KHRD0096	50900.135	10926.453	4952.195	-2.31	343.80	188.50	W4954 OD
KHRD0097	50900.135	10926.453	4952.195	-15.10	347.50	272.25	W4954 OD
KHRD0098	50900.185	10926.527	4952.191	-9.75	354.00	234.04	W4954 OD
KHRD0099	50851.943	10976.997	4951.740	-7.71	333.10	142.00	W4954 OD
KHRD0100	50803.248	10987.942	4954.779	4.78	12.50	142.00	W4954 OD
KHRD0100	50803.303	10987.880	4954.778	2.71	21.90	123.73	W4954 OD W4954 OD
KHRD0101	50487.996	10563.698	5121.895	25.66	208.00	127.01	W5120 EOD
KHRD0102 KHRD0103	50487.996	10564.380	5121.895	44.05	208.00	160.00	W5120 EOD W5120 EOD
KHRD0103	50487.598	10563.908	5122.559	8.00	228.00	135.00	W5120 EOD W5120 EOD
KHRD0104 KHRD0105	50487.598	10563.714	5121.109	36.47	234.10	135.00	W5120 EOD W5120 EOD
KHRD0105 KHRD0106	50488.017	10564.714	5122.107	16.73	278.20	125.07	W5120 EOD
KHRD0106 KHRD0107	50487.029	10564.983	5121.482	28.19	278.20	125.07	W5120 EOD W5120 EOD
	-			-36.10			
KHRD0108	50450.112	10244.591	5148.551		86.37	120.08	C5145 WROS SP
KHRD0109	50441.144	10236.469	5148.211	-35.27	114.68	105.00	C5145 WROS SP
KHRD0110	50441.047	10236.430	5148.102	-43.80	142.43	130.00	C5145 WROS SP
KHRD0111	50441.184	10235.327	5148.272	-17.06	164.80	115.00	C5145 WROS SP
KHRD0112	50375.642	10281.871	5179.883	-43.05	50.00	190.00	C5180 THEON NOD

Holed ID	Easting (Mine Grid)	Northing (Mine Grid)	RL (Mine Grid)	Dip	Azimuth	Depth	Collar Location
KHRD0113	50375.642	10281.861	5179.864	-49.76	48.20	180.00	C5180 THEON NOD
KHRD0114	50375.597	10281.754	5179.916	-49.24	58.67	200.00	C5180 THEON NOD
KHRD0115	50375.584	10281.989	5179.811	-57.22	38.70	196.75	C5180 THEON NOD
KHRD0116	50489.667	10582.516	5122.649	31.78	323.10	116.00	W5120 E
KHRD0117	50493.144	10582.823	5122.873	34.09	359.40	114.00	W5120 E
KHRD0118	50713.058	11047.559	4980.687	-1.82	242.40	215.10	W4975 INT SP
KHRD0120	50713.000	11048.300	4981.800	-1.95	273.90	309.50	W4975 INT SP
KHRD0123	50712.858	11048.381	4980.681	-13.37	262.80	255.70	W4975 INT SP
KHRD0126	50813.217	10954.128	4955.116	3.87	177.00	165.00	W4954 SP
KHRD0127	50813.224	10954.127	4955.123	4.20	167.00	190.60	W4954 SP
KHRD0128	50813.460	10954.407	4953.443	-30.05	167.10	230.00	W4954 SP
KHRD0129	50814.209	10954.559	4954.365	2.92	149.00	220.00	W4954 SP
KHRD0130	50814.209	10954.559	4954.365	3.00	135.00	210.00	W4954 SP
KHRD0137	50894.800	10922.930	4951.200	-37.00	18.00	226.98	W 4954 ACC
KHRD0140	50875.360	10925.140	4950.700	28.08	359.00	50.00	W 4954 ACC
KHRD0141	50875.360	10925.140	4950.700	9.83	18.00	46.97	W 4954 ACC

		Length		
Hole ID	From	(m)	Au (g)/t	Comments
KHRD0006	0.00	3.00	27.67	Stockwork Mineralisation
KHRD0006	6.40	2.60	1.37	Stockwork Mineralisation
KHRD0006	212.60	1.10	1.35	Stockwork Mineralisation
KHRD0006	312.00	3.50	5.94	Stockwork Mineralisation
KHRD0006	318.00	1.00	2.05	Stockwork Mineralisation
KHRD0007	176.88	1.52	1.88	Stockwork Mineralisation
KHRD0007	224.85	1.15	1.76	Stockwork Mineralisation
KHRD0010	214.90	1.10	3.55	Stockwork Mineralisation
KHRD0013	107.96	2.25	15.28	Stockwork Mineralisation
KHRD0015	96.00	1.00	1.25	Stockwork Mineralisation
KHRD0015	138.50	1.70	1.84	Stockwork Mineralisation
KHRD0015	223.84	1.01	1.13	Stockwork Mineralisation
KHRD0035	41.00	1.00	1.21	Stockwork Mineralisation
KHRD0035	43.70	2.45	1.45	Stockwork Mineralisation
KHRD0035	81.00	1.00	1.97	Stockwork Mineralisation
KHRD0037	61.50	1.17	3.16	Stockwork Mineralisation
KHRD0037	81.15	1.11	3.32	Stockwork Mineralisation
KHRD0037	106.37	1.23	4.05	Stockwork Mineralisation
KHRD0058	105.30	1.00	2.12	Stockwork Mineralisation
KHRD0058	107.51	1.09	4.06	Stockwork Mineralisation
KHRD0058	125.60	2.00	2.31	Domain; Regal
KHRD0065	7.69	1.86	2.57	Stockwork Mineralisation
KHRD0065	12.86	2.16	2.23	Stockwork Mineralisation
KHRD0073	46.00	1.00	2.61	Stockwork Mineralisation
KHRD0073	53.00	3.00	1.41	Stockwork Mineralisation
KHRD0073	89.00	1.15	1.02	Stockwork Mineralisation
KHRD0074	27.00	1.00	1.17	Stockwork Mineralisation
KHRD0074	66.85	1.35	7.52	Domain; IMP N
KHRD0074	77.00	1.00	2.87	Stockwork Mineralisation
KHRD0075	6.80	1.10	10.03	Stockwork Mineralisation
KHRD0075	30.00	1.00	1.07	Stockwork Mineralisation
KHRD0075	42.05	1.20	5.06	Domain; IDD 17 NTH
KHRD0075	52.55	2.45	1.44	Stockwork Mineralisation
KHRD0076	42.00	1.00	2.79	Domain; IMP N
KHRD0077	19.50	1.10	5.18	Domain; Gilly
KHRD0077	85.00	1.60	18.59	Stockwork Mineralisation
KHRD0077	90.00	1.20	6.51	Stockwork Mineralisation
KHRD0078	77.00	5.00	3.81	Stockwork Mineralisation
KHRD0078	121.97	1.03	4.00	Stockwork Mineralisation
KHRD0079	134.85	1.35	4.45	Stockwork Mineralisation
KHRD0080	124.20	1.35	2.45	Stockwork Mineralisation
KHRD0080	136.15	1.65	2.12	Stockwork Mineralisation
KHRD0087	20.21	1.19	2.72	Domain; Regal
KHRD0088	15.69	1.51	2.46	Stockwork Mineralisation
KHRD0088	26.48	2.12	2.57	Domain; Regal
KHRD0093	30.00	1.00	1.09	Stockwork Mineralisation
KHRD0093	35.75	1.25	8.09	Stockwork Mineralisation
KHRD0093	48.00	3.42	26.42	Stockwork Mineralisation
KHRD0093	114.00	1.05	1.03	Stockwork Mineralisation
KHRD0094	7.00	1.00	1.52	Stockwork Mineralisation
KHRD0094	42.00	2.00	1.48	Stockwork Mineralisation
KHRD0095	20.62	2.93	2.40	Stockwork Mineralisation
KHRD0095	27.99	2.26	1.60	Stockwork Mineralisation
KHRD0095	61.60	2.30	9.69	Stockwork Mineralisation
KHRD0095	66.19	1.79	2.80	Stockwork Mineralisation
	00.15	1.75	2.00	

Table 2: KoTH significant assays report in this announcement (grades >1.0g/t)

Hole ID	From	Length (m)	Au (g)/t	Comments
KHRD0095	70.51	5.79	18.24	Stockwork Mineralisation
KHRD0095	80.60	1.20	1.18	Stockwork Mineralisation
KHRD0095	84.20	1.20	1.18	Stockwork Mineralisation
KHRD0095	104.41	1.12	2.94	Stockwork Mineralisation
KHRD0095	178.82	2.68	11.51	Stockwork Mineralisation
KHRD0095	196.30	1.20	3.51	Stockwork Mineralisation
KHRD0095	250.53	1.17	2.80	Stockwork Mineralisation
KHRD0095	254.06	4.04	1.98	Stockwork Mineralisation
KHRD0095	270.54	1.13	1.68	Stockwork Mineralisation
KHRD0095	318.40	2.30	4.68	Stockwork Mineralisation
KHRD0096	23.55	1.35	11.63	Stockwork Mineralisation
KHRD0096	26.15	1.15	3.22	Stockwork Mineralisation
KHRD0096	30.30	1.70	2.10	Stockwork Mineralisation
KHRD0096	42.00	6.30	2.96	Stockwork Mineralisation
KHRD0096	57.00	4.00	7.20	Domain; Lemonwood
KHRD0096	81.00	1.00	2.61	Stockwork Mineralisation
KHRD0096	98.00	1.50	6.21	Stockwork Mineralisation
KHRD0096	122.00	3.00	6.65	Stockwork Mineralisation
KHRD0096	135.00	1.00	1.20	Stockwork Mineralisation
KHRD0096	142.25	1.75	1.51	Stockwork Mineralisation
KHRD0097	5.00	1.00	2.07	Stockwork Mineralisation
KHRD0097	15.00	1.35	16.21	Stockwork Mineralisation
KHRD0097	18.00	1.00	3.68	Stockwork Mineralisation
KHRD0097	28.40	1.25	8.14	Stockwork Mineralisation
KHRD0097	38.95	1.15	23.96	Stockwork Mineralisation
KHRD0097	57.85	1.15	2.78	Domain; Lemonwood
KHRD0097	60.15	1.35	17.65	Stockwork Mineralisation
KHRD0097	65.00	1.00	1.10	Stockwork Mineralisation
KHRD0097	183.65	1.35	7.31	Stockwork Mineralisation
KHRD0097	191.00	4.10	1.34	Stockwork Mineralisation
KHRD0097	199.00	1.00	1.10	Stockwork Mineralisation
KHRD0097	249.85	1.20	6.06	Stockwork Mineralisation
KHRD0098	5.00	1.00	3.03	Stockwork Mineralisation
KHRD0098	20.00	1.40	6.57	Stockwork Mineralisation
KHRD0098	26.00	1.00	1.68	Stockwork Mineralisation
KHRD0098	54.00	6.00	27.48	Stockwork Mineralisation
KHRD0098	131.31	2.48	1.26	Stockwork Mineralisation
KHRD0098	147.96	2.04	17.25	Stockwork Mineralisation
KHRD0098	163.43	1.32	5.89	Stockwork Mineralisation
KHRD0098	168.00	3.00	1.50	Stockwork Mineralisation
KHRD0098	190.00	1.00	1.02	Stockwork Mineralisation
KHRD0098	214.55	1.46	6.98	Stockwork Mineralisation
KHRD0098	223.31	1.65	20.76	Stockwork Mineralisation
KHRD0099	5.00	1.11	2.14	Stockwork Mineralisation
KHRD0099	20.67	2.53	4.61	Domain; Margary
KHRD0099	36.85	1.15	1.12	Stockwork Mineralisation
KHRD0099	39.83	1.23	15.25	Stockwork Mineralisation
KHRD0099	52.32	1.81	4.03	Stockwork Mineralisation
KHRD0099	80.81	1.19	1.45	Stockwork Mineralisation
KHRD0099	108.07	1.49	2.69	Domain; IMP_N1
KHRD0099	126.08	2.37	1.06	Stockwork Mineralisation
KHRD0099	135.04	2.71	5.89	Stockwork Mineralisation
KHRD0100	21.30	1.27	17.82	Stockwork Mineralisation
KHRD0100	36.59	1.21	2.00	Stockwork Mineralisation
KHRD0100	41.85	2.25	9.03	Stockwork Mineralisation
KHRD0100	53.83	1.17	1.42	Stockwork Mineralisation
KHRD0100	71.35	1.20	1.12	Stockwork Mineralisation

Hole ID	From	Length (m)	Au (g)/t	Comments
KHRD0100	77.10	1.20	1.75	Stockwork Mineralisation
KHRD0100	90.00	1.31	3.69	Stockwork Mineralisation
KHRD0101	37.00	1.08	1.56	Domain; IMP_N1
KHRD0101	56.07	1.22	53.50	Domain; IMP_N1
KHRD0101	74.04	2.30	3.18	Stockwork Mineralisation
KHRD0101	82.49	1.76	17.25	Stockwork Mineralisation
KHRD0101	107.29	1.08	2.59	Stockwork Mineralisation
KHRD0102	62.39	2.74	8.90	Stockwork Mineralisation
KHRD0103	12.35	1.95	1.06	Stockwork Mineralisation
KHRD0103	63.00	1.10	1.69	Stockwork Mineralisation
KHRD0104	8.86	1.14	1.57	Stockwork Mineralisation
KHRD0104	41.59	1.01	5.50	Stockwork Mineralisation
KHRD0104	117.33	1.20	1.30	Stockwork Mineralisation
KHRD0105	55.43	1.12	1.22	Stockwork Mineralisation
KHRD0105	115.22	2.84	2.48	Stockwork Mineralisation
KHRD0106	22.11	3.69	1.91	Stockwork Mineralisation
KHRD0106	107.49	1.11	3.32	Stockwork Mineralisation
KHRD0107	102.50	1.04	14.55	Stockwork Mineralisation
KHRD0108	93.00	1.52	1.78	Stockwork Mineralisation
KHRD0110	104.00	1.00	1.80	Stockwork Mineralisation
KHRD0112	41.00	1.00	3.83	Stockwork Mineralisation
KHRD0114	124.00	1.00	9.44	Stockwork Mineralisation
KHRD0116	8.00	1.00	1.38	Stockwork Mineralisation
KHRD0116	15.00	1.90	2.97	Stockwork Mineralisation
KHRD0116	23.90	2.35	24.59	Stockwork Mineralisation
KHRD0116	27.82	2.49	6.06	Stockwork Mineralisation
KHRD0116	31.42	1.18	46.06	Stockwork Mineralisation
KHRD0116	83.00	2.00	9.15	Stockwork Mineralisation
KHRD0117	53.15	1.10	1.66	Stockwork Mineralisation
KHRD0118	1.80	1.90	1.42	Stockwork Mineralisation
KHRD0118	27.67	1.13	5.85	Stockwork Mineralisation
KHRD0118	34.38	1.64	2.19	Stockwork Mineralisation
KHRD0118	69.14	1.46	9.45	Stockwork Mineralisation
KHRD0118	87.80	1.07	1.06	Stockwork Mineralisation
KHRD0118	149.10	1.00	11.40	Stockwork Mineralisation
KHRD0120	52.20	1.08	1.17	Stockwork Mineralisation
KHRD0120 KHRD0120	135.16	2.29 1.23	1.28	Stockwork Mineralisation
KHRD0120 KHRD0120	189.35 198.11	1.23	2.76 3.00	Stockwork Mineralisation Stockwork Mineralisation
KHRD0120	15.24	1.93	3.44	Stockwork Mineralisation
KHRD0123	25.45	1.05	1.12	Stockwork Mineralisation
KHRD0123	146.65	4.45	17.15	Stockwork Mineralisation
KHRD0123	153.32	3.20	1.33	Stockwork Mineralisation
KHRD0123	184.09	1.01	1.16	Stockwork Mineralisation
KHRD0123	193.00	1.28	6.52	Stockwork Mineralisation
KHRD0125	0.00	4.20	3.14	Domain; IMP N
KHRD0126	45.00	5.00	1.22	Domain; IDD 17 NTH
KHRD0126	61.00	1.00	1.20	Stockwork Mineralisation
KHRD0126	80.00	1.00	2.11	Stockwork Mineralisation
KHRD0126	84.00	1.00	3.11	Stockwork Mineralisation
KHRD0126	96.00	1.00	3.48	Stockwork Mineralisation
KHRD0126	118.00	1.00	1.58	Stockwork Mineralisation
KHRD0126	139.62	1.03	1.46	Stockwork Mineralisation
KHRD0126	143.00	1.00	1.40	Stockwork Mineralisation
KHRD0120	0.00	11.38	2.56	Domain; IMP N
KHRD0127	12.43	1.28	4.74	Domain; IMP_N
KHRD0127	20.50	1.86	17.69	Stockwork Mineralisation
KIINDU12/	20.50	1.00	17.09	Stockwork wineralisation

Hole ID	From	Length (m)	Au (g)/t	Comments
KHRD0127	80.00	1.00	1.18	Stockwork Mineralisation
KHRD0127	131.91	2.09	5.97	Stockwork Mineralisation
KHRD0127	137.00	1.24	2.18	Stockwork Mineralisation
KHRD0127	140.00	1.00	1.92	Stockwork Mineralisation
KHRD0127	162.00	1.50	3.64	Stockwork Mineralisation
KHRD0128	42.00	1.00	1.16	Stockwork Mineralisation
KHRD0128	113.00	1.00	1.65	Stockwork Mineralisation
KHRD0128	116.93	1.07	1.32	Stockwork Mineralisation
KHRD0128	142.00	1.00	7.30	Stockwork Mineralisation
KHRD0128	170.95	1.05	1.40	Stockwork Mineralisation
KHRD0128	220.82	2.18	1.46	Stockwork Mineralisation
KHRD0129	22.00	1.00	2.39	Stockwork Mineralisation
KHRD0129	61.00	1.00	1.20	Stockwork Mineralisation
KHRD0129	87.34	3.66	1.00	Stockwork Mineralisation
KHRD0129	97.00	1.00	2.42	Stockwork Mineralisation
KHRD0129	115.00	1.00	2.60	Stockwork Mineralisation
KHRD0129	120.00	1.05	1.10	Stockwork Mineralisation
KHRD0130	0.00	1.10	1.10	Stockwork Mineralisation
KHRD0130	21.00	1.75	2.83	Stockwork Mineralisation
KHRD0130	77.80	1.57	2.21	Stockwork Mineralisation
KHRD0130	81.93	1.39	2.30	Stockwork Mineralisation
KHRD0130	86.00	2.00	2.49	Stockwork Mineralisation
KHRD0130	90.00	1.57	3.39	Stockwork Mineralisation
KHRD0130	98.00	5.94	9.42	Stockwork Mineralisation
KHRD0130	108.00	3.77	2.75	Stockwork Mineralisation
KHRD0137	57.00	1.00	4.71	Stockwork Mineralisation
KHRD0137	68.80	1.40	1.28	Stockwork Mineralisation
KHRD0137	99.00	1.00	23.90	Stockwork Mineralisation
KHRD0137	108.70	1.60	2.95	Stockwork Mineralisation
KHRD0140	8.05	1.02	3.75	Stockwork Mineralisation
KHRD0140	12.65	1.15	1.27	Stockwork Mineralisation
KHRD0140	28.07	7.93	2.91	Stockwork Mineralisation
KHRD0141	23.50	1.53	5.37	Stockwork Mineralisation
KHRD0141	28.94	1.41	37.83	Stockwork Mineralisation
KHRD0141	31.44	1.57	8.01	Stockwork Mineralisation
KHRD0141	44.75	1.17	1.66	Stockwork Mineralisation