

7 September 2023

Mineral Resource and Ore Reserve Statement at 30 June 2023

The scale and potential of Red 5's Leonora District operations reinforced with updated Mineral Resources of 6.2Moz and Ore Reserves of 2.6Moz

Key Highlights:

- Red 5 Group Mineral Resource Estimate of 6.2Moz of contained gold and Ore Reserve Estimate of 2.6Moz of contained gold at 30 June 2023.
- A continued increase in Resource confidence at King of the Hills (KOTH), with a 185% increase in open pit Measured Resources and a 102% increase in underground Indicated Resources.
- A total of 75,365m of underground drilling and 137,031m of open pit grade control drilling was completed at KOTH during FY2023.
- Significant emphasis has been placed on grade control and Resource conversion, particularly at the KOTH underground where drilling focused on de-risking stoping areas within the FY24 and FY25 mine plans.
- Darlot underground Ore Reserve increased by 117% post depletion.
- The open pit and underground Ore Reserves include mining dilution and ore loss that reflects current mining practices across the KOTH and Darlot operations.

Updated KOTH Gold Project Mineral Resource Estimate at 30 June 2023:

- Total Measured, Indicated and Inferred Mineral Resource of **96.5Mt at 1.4g/t Au for 4.5Moz of contained gold**, comprising:
 - **Open Pit Resource: 75.7Mt at 1.3g/t Au for 3.2Moz of contained gold**. This includes a +185% increase in contained ounces in the Measured Resource category.
 - Underground Resource: 16.6Mt at 2.3g/t Au for 1.2Moz of contained gold. This includes a +102% increase in contained ounces in the Indicated Resource category.
 - Stockpiles, ROM and Broken Stocks: 4.2Mt at 0.5g/t Au for 0.1Moz of contained gold.

Updated KOTH Gold Project Ore Reserve Estimate at 30 June 2023:

- Total Proved and Probable Ore Reserve of 69.5Mt at 1.1g/t Au for 2.5Moz of contained gold, comprising:
 - **Open Pit Reserve: 62.7Mt at 1.1g/t Au for 2.2Moz of contained gold**. This includes a +191% increase in contained ounces in the Proved Reserve category.
 - Underground Reserve: 2.5Mt at 1.8g/t Au for 0.1Moz of contained gold, representing a +10% increase in contained ounces, post depletion, since the previous estimate at 30 June 2022.
 - Stockpiles, ROM and Broken Stocks: 4.2Mt at 0.5g/t Au for 0.1Moz of contained gold.

Updated Darlot Gold Project Mineral Resource Estimate at 30 June 2023:

• Total Measured, Indicated and Inferred Mineral Resource of **16.6Mt at 3.3g/t Au for 1.8Moz** of contained gold. This includes the Darlot regional underground resources, open pit resources and stockpiles.

Updated Darlot Gold Project Ore Reserve Estimate at 30 June 2023:

- Total Proved and Probable Ore Reserve of **1.4Mt at 2.5g/t Au for 114koz** of contained gold, including stockpiles and broken stocks.
- Update delivers a +117% increase in contained ounces, post depletion, since the previous estimate at 30 June 2022, reflecting grade control drilling and new mining areas at Lower Burswood, Boon West, Chappell, Dar Cent and Upper Oval.

Red 5 LimitedABN 73 068 647 610ASX: REDShares on issue: 3,459MLevel 2, 35 Ventnor Avenue West Perth 6005 Western AustraliaTel: (+61) 8 9322 4455Fax: (+61) 8 9481 5950Web: www.red5limited.comInvestor enquiries: info@red5limited.com

Management Comment

Red 5 Managing Director, Mark Williams, said: "The updated Reserve and Resource Statement for 2023 provides further strong support for the Company's ongoing mine plans in the Leonora District, as well as highlighting the exceptional quality of the King of the Hills (KOTH) orebody.

"Across our KOTH and Darlot operations, total Mineral Resources now stand at 6.2 million ounces and Ore Reserves at 2.6 million ounces at 30 June 2023, after accounting for mining depletion.

"Throughout FY23, significant emphasis was placed on grade control and Resource conversion, particularly at the KOTH underground where drilling focused on de-risking stoping areas within the FY24 and FY25 mine plans. This drilling provided strong Resource conversion for both the KOTH open pit and underground, with a 185% increase in Measured material within the open pit and a 102% increase in Indicated material within the underground.

"KOTH continues to demonstrate exceptional capacity for Resource and Reserve growth, with surface and underground drilling to continue throughout the year to continue increasing the definition, understanding and size of the orebody, which remains open in all directions."

Figure 1: KOTH open pit Ore Reserves.

Figure 3: KOTH plan view showing the open pit and underground mines against the granodiorite.

Figure 4: KOTH long section looking west outlining the key target areas for planned underground drilling for FY24.

Red 5 Limited ("Red 5" or "the Company") (ASX: RED) is pleased to release its annual Mineral Resource and Ore Reserve Statement for the King of the Hills and Darlot gold mining operations in the Eastern Goldfields region of Western Australia at 30 June 2023.

RED5 Limited

1. KING OF THE HILLS GOLD PROJECT

King of the Hills Gold Project Mineral Resource at 30 June 2023 Cut-off Grade Au Contained Mining Tonnes Project Classification Au (g/t) Method (kt) (g/t) Au (koz) Measured 4,056 1.1 142 Indicated 55,658 1.3 2,375 OP³ 0.4 Inferred 9,009 359 1.2 Sub Total 68,722 1.3 2,876 Measured 37 2.3 3 King of the Hills Indicated 11,901 2.4 911 1.0 UG³ Inferred 297 4,622 2.0 16,560 Sub Total 2.3 1,211 145 Measured 4,092 1.1 Indicated Variable All 67,559 1.5 3,286 Inferred 13,630 1.5 657 King of the Hills – Sub Total 85,282 4,087 1.5 Indicated 5,410 242 1.4 Variable OP **Regional Resources** Inferred 1,610 1.3 67 **Regional Resources – Sub Total** 7,020 1.4 308 Measured 4,056 1.1 142 Indicated 61,068 2,617 1.3 OP Variable Inferred 10,619 1.2 425 Sub Total 75,742 3,184 1.3 King of the Hills and Regional Resources Measured 37 2.3 3 Indicated 11,901 911 2.4 1.0 UG Inferred 4,622 297 2.0 Sub Total 16,560 1,211 2.3 **KOTH and KOTH Regional Resource – Sub Total** 92,302 4,395 1.5 Stockpiles 0.0 OP Indicated 1,682 0.4 24 **Broken Stocks** Variable UG Measured 1.7 18 1 Variable 2,543 ROM UG Measured 0.5 43 Stockpiles – Sub Total 4,244 0.5 68 Measured 6,654 0.9 189 King of the Hills Gold Project Variable All Indicated 74,651 3,552 1.5 (at 30 June 2023) Inferred 15,240 1.5 723 **Grand Total** 96,545 1.4 4,463

Table 1: KOTH Gold Project Mineral Resource

King of the Hills Gold Project Mineral Resource at 30 June 2022										
			Measured	1,330	1.2	50				
King of the Hills Gold Project	Variable	All	Indicated	78,290	1.4	3,492				
			Inferred	22,680	1.6	1,156				
King of the Hills Gold Project – Sub T	102,300	1.4	4,698							
Stockpiles	Variable	OP	Indicated	2,064	0.4	28				
Broken stocks	Variable	UG	Measured	5	1.2	0.2				
ROM	Variable	UG	Measured	1,120	0.6	22				
Stockpiles – Sub Total				3,189	0.5	50				
			Measured	2,455	0.9	72				
(at 30 June 2022)	Variable	All	Indicated	80,354	1.4	3,520				
(at 56 salle 2022)			Inferred	22,680	1.6	1,156				
Grand Total				105,489	1.4	4,748				
Kin	g of the Hills Gold Proj	ect Mineral R	esource - differe	ence						
			Measured	4,199	0.0	117				
King of the Hills Gold Project	Variable	All	Indicated	-5,703	0.1	32				
			Inferred	-7,440	-0.1	-434				
Grand total - difference	-8,944	0.0	-285							
Production (mined) for FY23	4,861	0.9	143							

Notes on KOTH Gold Project JORC 2012 Mineral Resource as outlined in Table 1

- 1. Mineral Resources are quoted as inclusive of Ore Reserves.
- 2. A discrepancy in summation may occur due to rounding.
- 3. OP = Open Pit and UG = Underground.
- 4. KOTH open pit resource figures are based on a Measured, Indicated and Inferred pit optimisation shell. This shell was generated with a gold price of A\$2,700/oz using updated unit cost data and pit wall guidelines.
- 5. The figures take into account cut-off dates for inclusion of drilling data at 30 June 2023 for KOTH underground and at 31 May 2023 for the Measured component of KOTH Open Pit.
- 6. The figures quoted take into account mining depletion at 30 June 2023.
- 7. OP cut-off at 0.4g/t was determined based on the estimated grade cut-off for a large-scale open pit mine.
- 8. UG cut-off at 1.0g/t determined based on estimated grade cut-off for a large-scale open stoping.
- 9. For additional detail refer to Appendix 4 for JORC 2012 Table 1, sections 1 to 3.
- 10. Figures quoted include all material types Oxide, Transitional and Fresh.
- 11. Portions of the UG Ore Reserves are reported within the A\$2,700 optimised pit shell.
- 12. For additional detail refer to Appendix 1 for the KOTH Regional Mineral Resources by deposit.

The updated KOTH Gold Project Mineral Resource represents:

- a 6% decrease (-285,000oz) in total contained ounces, compared with the estimate at 30 June 2022;
- a 21% increase (+211,000oz) in underground contained ounces;
- a 185% increase (+92,000oz) in open pit Measured Resources; and
- a significant 102% (+461,000oz) increase in underground Indicated Resources, equating to approximately 46% conversion of Inferred to Indicated within the KOTH underground resource.

The update reflects 146,729m of open pit grade control drilling and 75,365m of underground drilling, as well as model depletion for mining up to 30 June 2023. No changes have been reported for the KOTH Regional Resources, comprising the Rainbow, Severn, Centauri and Cerebus-Eclipse deposits.

Figure 5: KOTH long section showing the additional drill traces for Resource definition drilling conducted by Red 5 for the June 2023 Mineral Resource update.

Figure 6: Plan view at KOTH showing the additional drill traces for Resource definition drilling conducted by Red 5 for the June 2023 Mineral Resource update.

King of the Hills Gold Project Ore Reserve at 30 June 2023									
Project	Au cut off g/t	Mining Method	Classification	Tonnes (kt)	Grade Au (g/t)	Contained Au (koz)			
			Proved	4,644	0.8	122			
	0.4	OP	Probable	54,188	1.2	2,010			
King of the Hills			Sub Total	58,831	1.1	2,132			
king of the fillis			Proved	0	0.0	0			
	1.4	UG	Probable	2,524	1.8	148			
			Sub Total	2,524	1.8	148			
King of the Hills – Sub Total	61,355	1.2	2,280						
			Proved	0	0.0	0			
Rainbow	0.3	OP	Probable	2,054	0.8	56			
			Sub Total	2,054	0.8	56			
			Proved	0	0.0	0			
Centauri	0.3	OP	Probable	326	1.2	13			
		ſ	Sub Total	326	1.2	13			
			Proved	0	0.0	0			
Cerebus-Eclipse	0.3	OP	Probable	1,490	1.0	47			
			Sub Total	1,490	1.0	47			
Regional Resources – Sub Total	3,869	0.9	116						
Stockpiles	0.0	OP	Probable	1,682	0.4	24			
Broken Stocks	Variable	UG	Proved	18	1.7	1			
ROM	Variable	All	Proved	2,543	0.5	43			
Stockpiles – Sub Total				4,244	0.5	68			
King of the Hills Gold Project	Variable	A 11	Proved	7,206	0.7	166			
(at 30 June 2023)	Variable		Probable	62,262	1.1	2,297			
Grand Total				69,468	1.1	2,464			
King of the H	lills Gold Pro	ject Ore Re	serve at 30 Jun	e 2022					
	Verieble	A 11	Proved	1,327	1.0	42			
King of the Hills and Regional Resources	variable	All	Probable	65,740	1.2	2,573			
King of the Hills and Regional Resources – Sub	Total			65,740	1.2	2,573			
Stockpiles	0.0	OP	Probable	2,064	0.4	28			
Broken Stocks	Variable	UG	Proved	5	1.2	0			
ROM	Variable	All	Proved	1,007	0.6	20			
Stockpiles – Sub Total				3,076	0.5	48			
King of the Hills Gold Project	Variable	A 11	Proved	2,339	0.8	62			
(at 30 June 2022)	Variable	All	Probable	67,804	1.2	2,600			
Grand Total				70,143	1.2	2,663			
King of the	e Hills Gold P	roject Ore I	Reserve - differ	ence					
			Proved	4,866	-0.1	104			
King of the Hills Gold Project	Variable	All	Probable	-5,542	0.0	-303			
Grand Total - difference				-676	-0.1	-199			
Production (mined) for FY23				4,894	0.9	143			

Table 2: KOTH Gold Project Ore Reserve

Notes on KOTH Gold Project JORC 2012 Ore Reserves as outlined in Table 2

1. Ore Reserves are quoted as inclusive of Mineral Resources.

2. A discrepancy in summation may occur due to rounding.

3. OP = Open Pit and UG = Underground.

- 4. Ore Reserves are estimated based on a gold price of A\$2,400 per ounce.
- 5. Cut-off grades for the KOTH OP are 0.4g/t Au, the KOTH UG are 1.3g/t Au, and Regional Reserves are 0.4g/t Au.
- 6. KOTH open pit reserves are generated with detailed pit designs.
- 7. Ore loss and mining dilution for all open-pit reserves were reflected in the SMU process. Additional mining dilution and ore loss is applied to weathered material.
- 8. Underground reserves have planned dilution varying between 5% and 15%, with planned mining recovery between 90% and 95%.
- 9. KOTH open pit reserves do not include any Inferred material.
- 10. KOTH underground reserves include a proportion of Inferred material that is entrained within the proved and probable stope designs.
- 11. For additional detail refer to Appendix 3 for Table 1, section 4.

The updated KOTH Gold Project Ore Reserve at 30 June 2023 represents a 2% decrease (-56koz) in contained ounces compared with the previous Ore Reserve as of 30 June 2022, net of mining depletion of 143koz since 30 June 2022.

2. DARLOT GOLD PROJECT

Table 3: Darlot Gold Project Mineral Resource

Darlot Gold Project Mineral Resources at 30 June 2023									
Project	Au cut off g/t	Mining method	Classification	Tonnes (kt)	Grade Au (g/t)	Contained Au (koz)			
			Measured	2	7.4	1			
Darlat	2.0	ЦС	Indicated	7,170	4.2	971			
Dariot	2.0	00	Inferred	4,541	3.9	568			
			Sub Total	11,713	4.1	1,540			
			Measured	0	0.0	0			
Great Western	1 5	UG	Indicated	57	4.0	7			
	1.5		Inferred	142	3.1	14			
			Sub Total	199	3.4	22			
Underground – Sub Total				11,912	4.1	1,561			
Darlot Region	0.5	OP	Measured	100	1.0	3			
			Indicated	810	1.2	31			
			Inferred	3,508	1.5	166			
			Sub Total	4,418	1.4	200			
			Measured	6	2.8	1			
Great Wastern	05	OP	Indicated	83	2.7	7			
Great Western	0.5	UP	Inferred	97	1.9	6			
			Sub Total	186	2.3	14			
Open pit – Sub Total				4,604	1.4	214			
Darlot Gold Project - Sub Total				16,516	3.3	1,775			
Broken Stocks	Variable	UG	Measured	12	2.9	1			
ROM	Variable	UG & OP	Measured	39	2.3	3			
Stockpiles – Sub Total			•	51	2.4	4			
Darlet Cald Preject			Measured	159	1.6	8			
(at 30 June 2023)	Variable	All	Indicated	8,120	3.9	1,017			
			Inferred	8,288	2.8	754			
Grand Total				16,567	3.3	1,779			

Darlot Gold Project Mineral Resources at 30 June 2022									
			Measured	108	1.1	4			
Darlot and Great Western	0.5 - 2.0	UG & OP	Indicated	8,099	3.9	1,032			
			Inferred	8,593	2.9	798			
Darlot and Great Western – Sub Total	16,800	3.4	1,834						
Broken Stocks	Variable	UG	Measured	16	2.3	1.0			
ROM	Variable	00	Measured	251	0.6	5			
Stockpiles – Sub Total	267	0.7	6						
	0.5 - 2.0	All	Measured	375	0.8	10			
Darlot Gold Project (at 30 June 2022)			Indicated	8,099	3.9	1,032			
(Inferred	8,593	2.9	798			
Grand Total				17,067	3.4	1,840			
C	Darlot Gold P	roject Miner	al Resources - differ	ence					
			Measured	-216	0.8	-2			
Darlot Gold Project	0.5 - 2.0	All	Indicated	21	-0.1	-15			
			Inferred	-305	0.0	-44			
Grand total - difference	-500	0.0	-61						
Production (mined) for FY23	Production (mined) for FY23								

Notes on Darlot Gold Project JORC 2012 Mineral Resources as outlined in Table 3

- 1. Mineral Resources are quoted as inclusive of Ore Reserves.
- 2. A discrepancy in summation may occur due to rounding.
- 3. For the Darlot open pit regional resources, Darlot Mining Company Pty Ltd (DMC) has a Joint Venture (JV) with PanAust Limited, where DMC owns 84% and PanAust owns 16%. The resources under the JV are Waikato South, totalling 1,902kt at 0.8g/t for 50koz of contained gold, and Cornucopia North, totalling 62kt at 1.3g/t for 3koz of contained gold. For information that relates to these deposits, refer to the ASX release dated 10 February 2020 titled "Red 5 Resource and Reserve growth at Darlot Gold Mine".
- 4. Refer to Appendix 2 for Darlot and Darlot Regional Mineral Resources by area.
- 5. For additional detail refer to Appendix 4 for relevant Table 1's for the reported Mineral Resources.

The updated Darlot Gold Project Mineral Resource represents a 3% decrease (61koz) in contained ounces compared with the previous estimate at 30 June 2022.

Table 4: Darlot Gold Project Ore Reserve

Darlot Gold Project Ore Reserve at 30 June 2023										
Project	Cut-off Au (g/t)	Mining Method	Classification	Tonnes (kt)	Grade Au (g/t)	Contained Au (koz)				
Darlat	17 24	шс	Proved	0	0.0	0				
	1.7 - 2.4	UG	Probable	1,341	2.6	110				
Darlot Gold Project – Sub Total				1,341	2.6	110				
Broken Stocks	Variable	UG	Proved	12	2.9	1				
ROM	Variable	UG	Proved	39	2.3	3				
Stockpiles – Sub Total	51	2.4	4							
Darlot Gold Project	Mandalala	All	Proved	51	2.4	4				
(at 30 June 2023)	Valiable		Probable	1,341	2.6	110				
Grand Total				1,393	2.5	114				
Darlot Go	ld Project	Ore Reser	ve at 30 June 20	022						
Davlat	17 24		Proved	0	0.0	0				
Dariot	1.7 - 2.4	UG	Probable	1,246	2.6	106				
Darlot Gold Project – Sub Total				1,256	2.6	106				
Broken stocks	Variable	UG	Proved	16	2.3	1				
ROM	Variable	UG	Proved	33	1.6	2				
Stockpiles – Sub Total	49	1.8	3							

Darlot Gold Project (at 30 June 2022)	Variable	All	Proved	49 1 256	1.8	3			
Grand Total			FIODADIE	1,230	2.0 2.6	100			
Darlot Gold Project Ore Reserve – difference									
Device Cold Project	Verieble	A.II	Proved	2	0.6	1			
Dariot Gold Project	Variable	All	Probable	85	-0.1	4			
Grand total - difference	87	1.9	5						
Production (mined) for FY23					2.5	56			

Notes on Darlot Gold Project JORC 2012 Ore Reserve as outlined in Table 4

- 1. Ore Reserves are quoted as inclusive of Mineral Resources.
- 2. A discrepancy in summation may occur due to rounding.
- 3. Ore Reserves are estimated based on a gold price of A\$2,400 per ounce.
- 4. The cut-off grade for production is 2.4g/t, and for development, it is 1.0g/t.
- 5. Mining dilution of 15% and a mining recovery of 92% has been applied.
- 6. Ore Reserve includes a proportion of Inferred material entrained within the proved and probable stope designs.
- 7. Appropriate modifying factors were applied.
- 8. For additional detail refer to Appendix 3 for Table 1, section 4.

The updated Darlot Gold Project Ore Reserve represents a 117% increase (+61koz) in contained ounces, compared with the Ore Reserve at 30 June 2022, net of mining depletion of 56koz since 30 June 2022.

Figure 7: Oblique view showing the Darlot underground Ore Reserve locations at 30 June 2023.

Authorised for release by the Board.

ENDS

For more information:

Investors/Shareholders: Mat Collins, Corporate Development Officer Patrick Duffy, Chief Corporate Development Officer Mark Williams, Managing Director Red 5 Limited Telephone: +61 8 9322 4455 **Media:** Nicholas Read / Kate Bell Read Corporate

Telephone: +61 8 9388 1474

3. COMPETENT PERSON STATEMENT

Accountabilities for the compilation of the annual Mineral Resource and Ore Reserve estimates are summarised in the table below.

Competent Persons for JORC 2012 Mineral Resource and Ore Reserve									
Discipline	Competent Person	Role	Project	Professional Membership	Membership Number				
Mineral Resources	Byron Dumpleton	Chief Geologist (Red 5 Limited)	King of the Hills Darlot Great Western Regional Resources	AIG	1598				
Ore Reserves	Kevin Oborne	Group Technical Services Manager (Red 5 Limited)	King of the Hills Darlot Regional Resources	AusIMM	226591				

Mineral Resource

Mr Byron Dumpleton confirms that he is the Competent Person for the Mineral Resources summarised in this report and Mr Dumpleton has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Dumpleton is a Competent Person as defined by the JORC Code, 2012 Edition, having more than five years' experience that is relevant to the style of mineralisation and type of deposit described in this report and to the activity for which he is accepting responsibility. Mr Dumpleton is a Member of the Australian Institute of Geoscientists, No. 1598. Mr Dumpleton is a full time employee of Red 5 Limited. Mr Dumpleton has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

Mr Dumpleton verifies that the Exploration Results and Mineral Resource estimate section of this report is based on and fairly and accurately reflects in the form and context in which it appears, the information in his supporting documentation relating to Open Pit and Underground Mineral Resource estimates.

Ore Reserve

Mr Kevin Oborne confirms that he is the Competent Person for the underground and open-pit Ore Reserve estimates summarised in this report and Mr Oborne has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Oborne is a Competent Person as defined by the JORC Code, 2012 Edition, having more than five years' experience that is relevant to the style of mineralisation and type of deposit described in the report and to the activity for which he is accepting responsibility. Mr Oborne is a Member of the Australasian Institute of Mining and Metallurgy, No. 226591. Mr Oborne is a full time employee of Red 5 Limited. Mr Oborne

has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

Mr Oborne verifies that the Ore Reserve section of this report is based on and fairly and accurately reflects, in the form and context in which it appears, the information in his supporting documentation relating to the Ore Reserves.

Forward-Looking Statements

Certain statements made during or in connection with this statement contain or comprise certain forwardlooking statements regarding Red 5's Mineral Resources and Reserves, exploration operations, project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Red 5 believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forwardlooking statements and no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in metals prices and exchange rates and business and operational risk management. Except for statutory liability which cannot be excluded, each of Red 5, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this statement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this statement or any error or omission. Red 5 undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

Governance and Internal Controls

Mineral Resources and Ore Reserves are estimated either by suitably qualified consultants or internal personnel in accordance with the applicable JORC Code and using industry standard techniques and internal guidelines for the estimation and reporting of Mineral Resources and Ore Reserves. All data is collected in accordance with applicable JORC Code requirements. Ore Reserve estimates are based on pre-feasibility or feasibility studies which consider all material factors.

The estimates and supporting data and documentation are reviewed by qualified Competent Persons (including estimation methodology, sampling, analytical and test data).

APPENDIX 1

Additional information on KOTH Mineral Resources at 30 June 2023

Table A1.1: KOTH Mineral Resource only showing a comparison between FY2023 and FY2022 quoted figures.

KOTH Resource Only at 30 June 2023									
Project	Au cut off g/t	Mining Method	Classification	Tonnes (kt)	Au g/t	Contained Au (koz)			
			Measured	4,056	1.1	142			
	0.4	OP	Indicated	55,658	1.3	2,375			
	0.4	or .	Inferred	9,009	1.2	359			
			Sub Total	68,722	1.3	2,876			
			Measured	37	2.3	3			
KOTH at 30 June 2023	1.0		Indicated	11,901	2.4	911			
	1.0	00	Inferred	4,622	2.0	297			
			Sub Total	16,560	2.3	1,211			
			Measured	4,092	1.1	145			
	Variable	All	Indicated	67,559	1.5	3,286			
			Inferred	13,630	1.5	657			
KOTH OP & UG sub total				85,282	1.5	4,087			
	Total KOT	H Resource	Only at 30 June 2022						
			Measured	1,330	1.2	50			
	0.4	OP	Indicated	66,870	1.4	2,800			
	0.4	OF	Inferred	12,990	1.3	540			
			Sub Total	81,190	1.3	3,390			
			Measured	0	0.0	0			
KOTH at 30 June 2022	1.0		Indicated	6,010	2.4	450			
	1.0	00	Inferred	8,080	2.1	550			
			Sub Total	14,090	2.2	1,000			
		All	Measured	1,330	1.2	50			
	Variable		Indicated	72,880	1.4	3,250			
			Inferred	21,070	1.6	1,090			
KOTH OP & UG sub total				95,280	1.4	4,390			
	KOTH Mir	neral Resou	rce ONLY - difference						
			Measured	2,726	-0.1	92			
	0.4		Indicated	-11,212	-0.1	-425			
	0.4	UP	Inferred	-3,982	0.0	-181			
			Sub Total	-12,468	0.0	-514			
			Measured	37	2.3	3			
KOTH Resource difference	1.0		Indicated	5,891	0.0	461			
	1.0	UG	Inferred	-3,458	-0.1	-253			
			Sub Total	2,470	0.1	211			
			Measured	2,762	-0.1	95			
	Variable	All	Indicated	-5,321	0.1	36			
			Inferred	-7,440	-0.1	-434			
KOTH OP & UG sub total				-9,998	0.1	-303			

KOTH JORC 2012 All Material within AUD 2,700 Pit Shell at various cut offs									
Cut-off (g/t)	Classification	Mining Method	Tonnes (t)	Gold (g/t)	Contained Gold (oz)				
	Measured	OP	8,565,000	0.7	182,000				
	Indicated	OP	110,074,000	0.8	2,866,000				
0.2	Inferred	OP	17,571,000	0.8	440,000				
	Total	ОР	136,210,000	0.80	3,488,000				
	Measured	OP	5,667,000	0.9	160,000				
	Indicated	OP	75,250,000	1.1	2,584,000				
0.3	Inferred	OP	12.601.000	1.0	400.000				
	Total	OP	93.518.000	1.05	3.144.000				
	Measured	OP	4,056,000	1.1	142,000				
	Indicated	OP	55.658.000	1.3	2.375.000				
0.4	Inferred	OP	9.009.000	1.2	359.000				
	Total	OP	68.723.000	1.30	2.876.000				
	Measured	OP	3,053,000	1.3	127,000				
	Indicated	OP	43.781.000	1.6	2.190.000				
0.5	Inferred	OP	6.930.000	1.5	330.000				
	Total	OP	53,764,000	1.53	2,647,000				
	Measured	OP	2,381,000	1.5	115,000				
	Indicated	OP	35,668,000	1.8	2,050,000				
0.6	Inferred	OP	5,466,000	1.7	303,000				
	Total	ОР	43,515,000	1.76	2,468,000				
	KOTH JORC 20	12 All material outside	e AUD 2,700 Pit Shell at vari	ious cut offs					
Classification	Cut-off (g/t)	Mining Method	Tonnes (t)	Gold (g/t)	Contained Gold (oz)				
classification		Mining Method	ronnes (t)	dold (5/ t)					
	Measured	UG	49,000	1.9	3,000				
0.8	Indicated	UG	15,957,000	2.0	1,026,000				
0.0	Inferred	UG	6,832,000	1.6	360,000				
	Total	UG	22,838,000	1.89	1,389,000				
	Measured	UG	37,000	2.3	3,000				
1.0	Indicated	UG	11,901,000	2.4	911,000				
	Inferred	UG	4,622,000	2.0	297,000				
	Total	UG	16,560,000	2.27	1,211,000				
	Measured	UG	32,000	2.5	3,000				
1.1	Indicated	UG	10,601,000	2.5	866,000				
	Inferred	UG	3,882,000	2.2	273,000				
	Total	UG	14,515,000	2.45	1,142,000				
	Measured	UG	28,000	2.7	2,000				
1.2	Indicated	UG	9,294,000	2.7	819,000				
	Inferred	UG	3,329,000	2.4	253,000				
	Iotal	UG	12,651,000	2.64	1,0/4,000				
	ivieasured	UG	20,000	3.2	2,000				
1.5	Indicated	UG	6,63U,UUU	3.3	704,000				
	Total		2,103,000	2.9	204,000				
1	IUldi	00	0,034,000	5.20	505,000				

Table A1.2: KOTH Mineral Resource by various cut offs above & below 2,700 pit shell

Notes on KOTH JORC 2012 Mineral Resources as outlined in above Tables

1. Mineral Resources are quoted as inclusive of Ore Reserves.

2. Any discrepancy in summation may occur due to rounding.

3. OP = Open Pit and UG = Underground.

5. The figures take into account cut-off dates for inclusion of drilling data at 30 June 2023 for KOTH underground and at 31 May for the Measured component for KOTH Open Pit.

6. The figures quoted take into account mining depletion at 30 June 2022 and do not include the KOTH regional resources.

^{4.} KOTH open pit resource figures are based on a Measured, Indicated and Inferred pit optimisation shell. This shell was generated with a gold price of A\$2,700/oz using updated unit cost data and pit wall guidelines.

- 7. OP cut-off at 0.4g/t was determined based on the estimated grade cut-off for a large-scale open pit mine.
- 8. UG cut-off at 1.0g/t determined based on estimated grade cut-off for a large-scale open stoping.
- 9. For additional detail refer to Appendix 4 for JORC 2012 Table 1, sections 1 to 3.
- 10. Figures quoted include all material types Oxide, Transitional and Fresh.
- 11. Portions of the UG Ore Reserves are reported within the A\$2,700 optimised pit shell.

Figure A1.1: Global grade tonnage curve for KOTH mineral resource.

20,800

47,900

Rainbow Mineral Resource at 30 June 2023								
Project	Cut-off (g/t)	Mining Method	Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
			Indicated	1,380,000	1.3	57,700		
Rainbow	0.6	OP	Inferred	200,000	1.4	9,300		
			Total	1,580,000	1.3	67,000		
		S	evern Mineral Resou	urce at 30 June 2023				
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
			Indicated	480,000	1.7	27,100		

Table A1.3: KOTH Regional Mineral Resources at 30 June 2023

440,000

920,000

1.5

1.6

Centauri Mineral Resource at 30 June 2023								
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
			Indicated	1,390,000	1.5	67,900		
Centauri 0.5 O	OP	Inferred	320,000	1.3	13,400			
			Total	1,710,000	1.5	81,300		

Cerebus-Eclipse Mineral Resource at 30 June 2023								
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
			Indicated	1,140,000	1.3	46,000		
Cerebus	0.5	OP	Inferred	380,000	1	12,000		
			Total	1,520,000	1.2	57,000		
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
			Indicated	1,020,000	1.3	43,000		
Eclipse	0.5	OP	Inferred	270,000	1.3	11,000		
			Total	1,300,000	1.3	53,000		
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)		
Tatal (Carabua 8			Indicated	2,160,000	1.3	89,000		
Fclinse)	0.5	OP	Inferred	650,000	1.1	23,000		
Lenpse)			Total	2,810,000	1.2	112,000		

Total KOTH Regional Resources at 30 June 2023						
Project	Cut-off (g/t)		Resource Classification	Tonnes (t)	Gold (g/t)	Ounces (oz)
			Indicated	5,410,000	1.4	241,700
Total Regional	Variable	OP	Inferred	1,610,000	1.3	66,500
			Total	7,020,000	1.4	308,200

Notes on KOTH JORC 2012 Mineral Resources for KOTH Operations Regional Resources

1. Mineral Resources are quoted as inclusive of Underground Ore Reserves.

2. Discrepancy in summation may occur due to rounding.

0.4

OP

Inferred

Total

Severn

3. Refer to Appendix 4 for JORC2012 Table 1 for the listed resources.

APPENDIX 2

Additional information for Darlot's underground and open pit Mineral Resources

Table A2.1: Darlot underground JORC 2012 Mineral Resources at 30 June 2023 by Area

Mineral Resource, Darlot Gold Mine at 30 June 2023						Mi	Mineral Resource, Darlot Gold Mine at 30 June 2022 Difference							
Area	Au cut off g/t		JORC 2012 Classification	kt	Au g/t	k oz	Au cut off g/t	JORC 2012 Classification	kt	Au g/t	k oz	k t	Au g/t	k oz
			Measured	2.1	7.4	1		Measured	2.1	7.4	1	0.0	0.0	0
Centenary/Middle	2.0		Indicated	2,498	4.7	378	2.0	Indicated	2,698	4.8	414	-200	-0.1	-36
Walters South	2.0	00	Inferred	1,193	4.9	189	2.0	Inferred	1,235	4.9	196	-42	0.0	-7
			Sub total	3,694	4.8	567		Sub total	3,935	4.8	610	-242	0.0	-43
Pedersen/Pederson			Indicated	2,167	3.8	267		Indicated	2,259	3.9	283	-93	-0.1	-16
South/	2.0	UG	Inferred	1,874	3.6	218	2.0	Inferred	1,878	3.6	219	-4	0.0	-1
Burswood			Sub total	4,041	3.7	485		Sub total	4,138	3.8	501	-97	0.0	-16
			Indicated	578	4.6	85		Indicated	580	4.6	86	-3	0.0	0
Lords South Lower	2.0	UG	Inferred	27	4.1	4	2.0	Inferred	27	4.1	4	0	0.0	0
			Sub total	605	4.6	89		Sub total	608	4.6	89	-3	0.0	0
		Indicated	1,709	3.4	187		Indicated	1,393	3.3	150	316	0.1	37	
Lords Felsics	2.0	UG	Inferred	1,270	3.3	134	2.0	Inferred	1,530	3.5	170	-259	-0.2	-37
			Sub total	2,979	3.3	320		Sub total	2,922	3.4	320	57	-0.1	1
Oval 2.0 U		Indicated	219	7.8	55		Indicated	219	7.8	55	0	0.0	0	
	2.0	UG	Inferred	176	4.2	24	2.0	Inferred	176	4.2	24	0	0.0	0
			Sub total	395	6.2	79		Sub total	395	6.2	79	0	0.0	0
Sub Total Darlot (UG)		Measured	2.1	7.4	1		Measured	2.1	7.4	1	0.0	0.0	0	
	ЦG	Indicated	7,170	4.2	971	2.0	Indicated	7,149	4.3	987	21	-0.1	-15	
Resource	2.0	00	Inferred	4,541	3.9	568	2.0	Inferred	4,846	3.9	612	-305	0.0	-44
			Sub -total	11,713	4.1	1,540		Sub -total	11,998	4.1	1,599	-284	-0.1	-59
			Measured	0	0.0	0		Measured	0	0.0	0	0	0.0	0
Great Western	15	ЦG	Indicated	57	4.0	7	15	Indicated	57	4.0	7	0	0.0	0
Underground	1.5	00	Inferred	142	3.1	14	1.5	Inferred	142	3.1	14	0	0.0	0
		Sub Total	199	3.4	22		Sub Total	199	3.4	22	0.0	0.0	0.0	
Tatal Darlat & Creat			Measured	2	7	1		Measured	2	7	1	0	0	0
Western (IIG)	1 5-2 0	ЦG	Indicated	7,227	4	979	15-20	Indicated	7,206	4	170 -239 -0.2 320 57 -0.1 55 0 0.0 24 0 0.0 79 0 0.0 1 0.0 0.0 987 21 -0.1 612 -305 0.0 1,599 -284 -0.1 0 0 0.0 7 0 0.0 14 0 0.0 1 0.0 0.0 14 0 0.0 994 21 0 626 -305 0	0	-15	
Resource	1.5-2.0		Inferred	4,683	4	582	1.3-2.0	Inferred	4,988	4	626	-305	0	-44
Nesource			Total	11,912	4.1	1,561		Total	12,196	4.1	1,621	-284	-0.1	-59

Notes on Darlot underground JORC 2012 Mineral Resources for Darlot Operations

1. Mineral Resources are quoted as inclusive of Underground Ore Reserves.

2. Discrepancy in summation may occur due to rounding.

3. Refer to Appendix 4 for JORC2012 Table 1 for the listed resources.

Table 2.2: Darlot open pit JORC 2012 Mineral Resources at 30 June 2023 by Area

Mineral Resource, Darlot Gold Mine at 30 June 2023 (Open Pits)						Mineral Resource, Darlot Gold Mine at 30 June 2022 Difference								
Area	Au cut off g/t		JORC 2012 Classification	Tonnes ('000s)	Au g/t	K oz	Au cut off g/t	JORC 2012 Classification	Tonnes ('000s)	Au g/t	K oz	k t	Au g/t	k oz
			Indicated	105	1.2	4		Indicated	105	1.2	4	0	0	0
Waikato	0.5	OP	Inferred	100	0.8	3	0.5	Inferred	100	0.8	3	0	0	0
			Sub total	205	1.0	7		Sub total	205	1.0	7	0	0	0
			Indicated	436	1.0	14		Indicated	436	1.0	14	0	0	0
Waikato South ³	0.5	OP	Inferred	1,466	0.8	37	0.5	Inferred	1,466	0.8	37	0	0	0
			Sub total	1,902	0.8	50		Sub total	1,902	0.8	50	0	0	0
			Indicated	47	1.5	2		Indicated	47	1.5	2	0	0	0
Cornucopia North ³	0.5	OP	Inferred	15	0.8	0	0.5	Inferred	15	0.8	0	0	0	0
			Sub total	62	1.3	3		Sub total	62	1.3	3	0	0	0
			Measured	100	1.0	3		Measured	100	1	3	0	0	0
St George	0.5	OP	Indicated	163	1.4	7	0.5	Indicated	163	1.4	7	0	0	0
St George 0.5	0.5	01	Inferred	152	1.0	5	0.5	Inferred	152	1	5	0	0	0
			Sub total	414	1.1	15		Sub total	414	0.8	15	0	0	0
		Indicated	60	1.9	4		Indicated	60	1.9	4	0	0	0	
Mission ⁴	0.5	ОР	Inferred	449	2.2	32	0.5	Inferred	449	2.2	32	0	0	0
			Sub total	509	2.2	35		Sub total	509	2.2	35	0	0	0
		OP	Indicated	0	0.0	0		Indicated	0	0	0	0	0	0
Cable ⁴ 0.1	0.5		Inferred	1,326	2.1	90	0.5	Inferred	1,326	2.1	90	0	0	0
			Sub total	1,326	2.1	90		Sub total	1,326	2.1	90	0	0	0
		б ОР	Measured	100	1.0	3		Measured	100	1	3	0	0	0
Sub Total Darlot Area	0.5		Indicated	810	1.2	31	0.5	Indicated	810	1.2	31	0	0	0
Open Pit Resource	0.5		Inferred	3,508	1.5	166	0.5	Inferred	3,508	1.5	166	0	0	0
			Sub total	4,418	1.4	200		Sub total	4,418	1.4	200	0	0	0
			Measured	6	2.6	1		Measured	6	2.6	1	0	0	0
Great Western	0.5	OB	Indicated	83	2.7	7	0.5	Indicated	83	2.7	7	0	0	0
Open Pit	0.5	UP	Inferred	97	1.9	6	0.5	Inferred	97	1.9	6	0	0	0
			Sub total	186	2.3	14		Sub total	186	2.3	14	0	0	0
			Measured	106	1.1	4		Measured	106	1.2	4	0	0	0
Total Darlot (OP) &	0.5		Indicated	893	1.3	38		Indicated	893	1.3	38	0	0	0
Great Western (OP)	0.5	OP	Inferred	3,605	1.5	172	0.5	Inferred	3,605	1.5	172	0	0	0
Resource			Total	4,604	1.4	214		Total	4,604	1.4	214	0	0	0

Notes on Darlot open pit JORC 2012 Mineral Resources for Darlot Operations

1. Mineral Resources are quoted as inclusive of Underground Ore Reserves.

2. Discrepancy in summation may occur due to rounding.

3. For Waikato South and Cornucopia North these resources have a JV with PanAust Limited where Darlot Mining Company Pty Ltd (DMC) owns 84% and PanAust 16%.

4. For the Mission and Cable resources they form part of the exclusive sub-lease over the southern portion of Exploration Licence E37/1220, refer to ASX release dated 2 December 2019.

APPENDIX 3

JORC2012 Table 1 section 4 for information relating to King of the Hills and Darlot Operations Ore Reserves

JORC TABLE 1's Section 4 for KING OF THE HILLS GOLD PROJECT

King of the Hills Open pit

Criteria	Comments
Mineral Resource estimate for conversion to Ore Reserves	 The Mineral Resources are reported inclusive of the Ore Reserve. Red 5 Limited has reported a Mineral Resource estimate for the King of the Hills (KOTH) deposit in Western Australia, in accordance with the JORC Code 2012. For the purposes of mine planning and estimation of Ore Reserves, the Mineral Resource Model (MRM) used as the basis for the reporting Mineral Resources has been regularised to create the selective mining unit (SMU) model. Red 5 Limited has re-classified the Mineral Resource classification in the SMU model to fairly and transparently reflect the approach taken to define the mineral resource classification in the MRM.
	 The economically evaluated mineralised blocks used only the gold grade to determine the block revenue. The Mineral Resource classifications have been applied to the SMU based on consideration of the confidence in the geological interpretation, the quality and quantity of the input data, the confidence in the estimation technique, and the likely economic viability of the mineralised material.
Site visits	• The Competent Person is a full-time employee of Red 5 Limited and conducts regular site visits.
Study status	 A Final Feasibility Study was completed for the King of the Hills mine in FY2021. The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions. The King of the Hills Open pit mine has been operating since January 2022. The mine has been in full production since and the technical and economic characteristics are well understood. Any further studies undertaken are to extend the mine or optimise the current operating practices. The life-of-mine plan for the operation is updated annually.
Cut-off parameters	 A break-even type of analysis was used to determine the cut-off grade applied in the Ore Reserve estimate. This is the grade that returns a total revenue that is equal to the sum of the costs directly attributable to ore including the processing and selling costs. Blocks that were below breakeven grade (0.4 g/t Au) were classified as waste.
Mining factors or assumptions	 Ore loss and dilution have been incorporated through the regularisation of the mineral resource model to a selective mining unit (SMU) size which is commensurate with the mining methods and equipment being utilised. An SMU size of 10m long by 10m wide by 5m high has been used. Additional ore loss and dilution factors have been applied based on reconciled performance for the material type. Ore zones which are predominately hosted in granodiorite have an additional ore loss of 0.5% and mining dilution of 2% at a dilution grade of 0.3 g/t Au applied to them. Ore zones in other lithological units (such as mafics, ultramafics and sediments) have an additional ore loss of 2.5% and dilution of 10% at zero grade applied to them. These factors are applied in addition to the ore loss and dilution incorporated through the block model regularisation process. The King of the Hills open pit is in full production with an extensive production history. Reconciliation results and production history show the mining methods to be well matched to the ore body.

	• The mining method used is contractor based using established medium-scale open pit mining equipment.
	 Red 5 Limited retain direct control of ore quality.
	• The open pit is relatively deep at approximately 395 metres from surface.
	• The geotechnical parameters used for the design of Stage 1 were developed by Red 5 Limited's geotechnical team based on detailed definition, characterisation, modelling and analysis of the local geotechnical domains. The pit design for Stage 1 has been verified as geotechnically compliant by the team that developed the parameters.
	• The geotechnical parameters used the design of Stages 2 to 5 were defined by independent consultants Peter O'Bryan and Associates (PBA) during the FFS. Results from this work were used for the designs for Stages 2 to 5, which have been verified as geotechnically compliant by the team that developed the parameters.
	• A hydrogeological report has been prepared by independent consultants Big Dog Hydrogeology Pty Ltd.
	• The mining operation is supported by a close spaced RC grade control program drilling multiple benches in each instance to minimise the impact on bench turnover rates.
	Inferred mineral resources are classified as waste.
	• In FY2021, SRK provided Red 5 Limited with multiple mining options with practical pit designs based on the Whittle optimisation outputs. These options were also presented as a high-level NPV Scheduler-based production schedule for order of magnitude economic assessment and risk assessment. Red 5 Limited selected the KOTH ultimate pit design to suit its business objectives.
	• The ultimate pit design has been used to generate this Ore Reserve.
Metallurgical factors or assumptions	• All King of the Hills ore is processed on site at the King of the Hills processing plant. The processing plant comprises a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL-type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The technology associated with processing of King of the Hills open pit ore is currently in operation and is based on industry standard practices.
	· Mino production and each flow actimates are based on a metallurgical
	recovery of 91.5%, which is consistent with current performance.
	 A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY23.
Environmental	 Mine production and cash now estimates are based on a metanoigical recovery of 91.5%, which is consistent with current performance. A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY23. The King of the Hills Open Pit mine is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
Environmental	 Mine production and cash now estimates are based on a metandigital recovery of 91.5%, which is consistent with current performance. A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY23. The King of the Hills Open Pit mine is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986. All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
Environmental	 Mine production and cash now estimates are based on a metaloligical recovery of 91.5%, which is consistent with current performance. A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY23. The King of the Hills Open Pit mine is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986. All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website. Sullivan Creek and Heritage zones at KOTH mine restrict access in some areas. Mining and waste dumping must not occur within 100 m of Sullivan Creek or within Heritage zones.

	• No potentially acid-forming materials have been identified at KOTH.
	• No threatened or endangered flora or fauna species have been identified within proposed disturbance areas. One Priority 1 flora species is located 500m from the waste dump.
Infrastructure	• The KOTH project area is well served with infrastructure.
	• Access to the site from the sealed Goldfields Highway is via an 8km all- weather mine access road.
	• Raw and process water is sourced from KOTH mine dewatering and the established Sullivan Creek and Rainbow Borefield.
	• Unskilled and skilled labour is sourced from the local area, where possible, or through Fly In Fly Out labour pool.
	• Accommodation is provided at the KOTH campsite located within the tenements, close to the Goldfields Highway.
	• Communications are present at the site, including Telstra optic fibre and mobile networks.
	• All other equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited.
Costs	 All costs used in the estimation of Ore Reserves are based on the Life-of-Mine plan.
	• Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board.
	• Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT).
	• Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan.
	• Royalties have been included at the WA government royalty of 2.5% of gold produced. A royalty payable to a third party is also applied to the King of the Hills tenements.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
	• The ultimate pit design is based on a Whittle pit shell at a Revenue Factor of 1.00 times the applied gold metal price of AU\$2,400/oz.
	• The assumptions on revenue and associated value drivers are supported by Life-of-Mine plan.
	• As part of Red 5 Limited's annual budgeting process, a sensitivity analysis for mining cost, processing cost, overall slope angle, ore loss, dilution, gold selling price and metal process recovery was completed.
Market assessment	• All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining.
Economic	• The mine is an operating asset and is not subject to project-type analysis.
	• Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	• Red 5 Limited's social licence to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community of Leonora. Red 5 Limited also recognises, and has a good relationship with, the Aboriginal groups within the Leonora Region. Formal Access and/or Heritage Protection Agreements exist with most of the Aboriginal groups in the Leonora and the eastern Kalgoorlie Region.

Other	 The King of the Hills Open Pit mine is an operating asset in full production. All other required government and statutory permits and approvals are in place. A company risk register is maintained to address and mitigate against all
	foreseeable risks that could impact the Ore Reserve.
	the mine.
Classification	• The Ore Reserve includes only Proved and Probable classifications.
	• The economically minable component of the Measured Mineral Resource has been classified as a Proved Ore Reserve.
	• The economically minable component of the Indicated Mineral Resource has been classified as a Probable Ore Reserve.
Audits or reviews	• The King of the Hills Open-pit Ore Reserve has been internally peer-reviewed.
	• In FY2021, Red 5 released the KOTH open-pit reserves refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The Ore Reserve process is consistent with that used in the Final Feasibility Study.
	• Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	 The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the estimates contained fall with the criteria of Proved and Probable Ore Reserves. Significant operating history supports the modifying factors applied. The Ore Reserve has been estimated in line with the Red 5 Limitod's Ore
	Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current King of the Hills Open-pit reserve.

King of the Hills Underground

Criteria	Comments				
Mineral Resource estimate for conversion to Ore Reserves	 The underground Ore Reserve estimate is based on the Mineral Resoure estimate carried out by Red 5 Limited. Gold grade was estimated usi Ordinary Kriging (OK) as the primary estimation method for majority of t domains while Inverse Distance Squared (ID2) was utilised for domai where the data population was insufficient for conclusive variography. The Mineral Resources are reported inclusive of the Ore Reserve. The models used to estimate this Reserve are described as: Block Model Central KGC LIG Feb23 Central 5060RL 5230PL dm 				
	West	KOTH_WB_Area_July23.bmf			
	Regal	KGC_UG_Feb23_Regal_4800RL_5070RL.dm			
	All other areas	KRES_MRM_Jul2022_Trim.dm			
Site visits	• The Competent Perso conducts regular site v	n is a full-time employee of Red 5 Limited and isits.			
Study status	 A Feasibility Study was refer to ASX release da Study delivers 2.4Moz life and confirming a studies undertaken are practices. The King of the Hills un The mine has been in characteristics are wel extend the mine or opt The life-of-mine plan for 	s completed for the King of the Hills mine in FY2021, ted 15 September 2020, titled "KOTH Final Feasibility Ore Reserve, underpinning an initial 16-year mine clear pathway to production in 2022." Any further to extend the mine or optimise the current operating derground mine has been operating since April 2022. full production since and the technical and economic I understood. Any further studies undertaken are to timise the current operating practices. or the operation is updated annually.			
Cut-off parameters	 A break-even type ana Reserve estimate. BECOG include processing of ore SECOG is used a level. It covers processing costs SOCOG applies development DEVCOG only processing costs 	lysis was used to determine the COG used in the Ores all costs associated with the extraction ande materialas the basis for defining economic stope areas on aall mining costs (excluding capital development),and site general & administration coststo all material that does not require additionalcovers the Operating development, haulage andUnitsDEVCOGg/t0.51.21.41.5			
Mining factors or assumptions	The King of the Hills U on detailed mine deve dilution and mining interrogation to genera	nderground Ore Reserve has been estimated based elopment and stope designs. Modifying factors for recovery have been applied post-geological ate the final diluted and recovered Ore Reserve.			

	• The King of the Hills Underground is in full production with an extensive production history. Reconciliation results and production history show the mining methods to be well matched to the ore body.
	• Stope size, development placement and ground support strategies have been designed in line with recommendations from experienced geotechnical personnel and external subject matter experts. Grade control drilling is completed in advance of production with all stopes to be mined in the next year already grade control drilled.
	• The model used to estimate the Ore Reserve is consistent with that which forms the basis of the Mineral Resource estimate for the King of the Hills Underground deposit.
	• Mining dilution of 10% has been applied to all long-hole open stoping methods.
	• A 95% mining recovery factor has been applied to long-hole open stopes. A 65% recovery has been applied to all airleg stopes.
	• The profiles of development excavations have been designed inclusive of 10% overbreak. No further dilution factors or mining recovery factors have been applied to development ore.
	• A global minimum mining width of 2.5m is used. Outlines are designed to honour the minimum width and include planned dilution.
	• Designed stopes with greater than 50% inferred blocks are excluded from the reported reserve.
	• The infrastructure requirements of the stoping methods used are either already in place or have been accounted for in the Life-of-Mine evaluation on which the project costings are based.
Metallurgical factors or assumptions	• All King of the Hills Underground ore is trucked to the King of the Hills processing plant. The processing plant consists of a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL-type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The technology associated with processing of King of the Hills Underground ore is currently in operation and is based on industry standard practices.
	• Mine production and cash flow estimates are based on a metallurgical recovery of 91.5%, which is consistent with current performance.
	• A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. A new tailings storage facility (TSF5) was constructed in FY2023.
Environmental	• The King of the Hills Underground mine is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
	• All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
Infrastructure	• A new Portal and decline access is required in FY2025 to maintain access to the underground workings as the KoTH open pit operations will mine near to the existing Portal. The capital and operating costs for this decline and associated ventilation upgrades have been estimated to Feasibility Study level. These have been included in the economic evaluation which demonstrates the economic viability of the Ore Reserve.

	• All equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited. The infrastructure includes, but is not limited to:
	 Dedicated gas and diesel power station
	 Water supply from three sources to provide redundancy
	• Processing plant
	• Mine development
	 Underground power and dewatering infrastructure
	 Workshop facilities on surface and underground
	 Ventilation fans
	• Camp facilities
	• Access to public roads
Costs	 All costs used in the estimation of Ore Reserves are based on the Life-of- Mine plan.
	 Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board.
	• Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT).
	• Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan.
	• Royalties have been included at the WA government royalty of 2.5% of gold produced. A royalty payable to a third party is also applied to the King of the Hills tenements and is applied at 1.5% of gold produced.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
Market assessment	• All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining.
Economic	• The mine is an operating asset and is not subject to project-type analysis.
	• Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	• Red 5 Limited's social licence to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community of Leonora. Red 5 Limited also recognises, and has a good relationship with, the Aboriginal groups within the Leonora Region. Formal Access and/or Heritage Protection Agreements exist with most of the Aboriginal groups in the Leonora and the eastern Kalgoorlie Region.
Other	• The King of the Hills Underground mine is an operating asset in full production. All other required government and statutory permits and approvals are in place.
	• A company risk register is maintained to address and mitigate against all foreseeable risks that could impact the Ore Reserve.
	• Contracts are in place for all critical goods and services required to operate the mine.
Classification	• The Ore Reserve includes only Proved and Probable classifications.
	 The economically minable component of the Measured Mineral Resource has been classified as a Proved Ore Reserve.
	The economically minable component of the Indicated Mineral Resource has
	been classified as a Probable Ore Reserve.

Audits or reviews	• The King of the Hills Underground Ore Reserve has been internally peer- reviewed.
	 Red 5 Limited organises external reviews of the Ore Reserve every two- years.
	• Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	 The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the estimates contained fall with the criteria of Proved and Probable Ore Reserves. Significant operating history supports the modifying factors applied. The Ore Reserve has been estimated in line with the Red 5 Limited's Ore
	• The Ore Reserve has been estimated in line with the Red 5 Limited's Ore Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current King of the Hills Underground reserve.

Rainbow

Criteria	Comments
Mineral Resource	• The Mineral Resources are reported inclusive of the Ore Reserve.
conversion to Ore Reserves	• Red 5 Limited has reported a Mineral Resource estimate for the Rainbow deposit in Western Australia, in accordance with the JORC Code 2012.
	• For the purposes of mine planning and estimation of Ore Reserves, the Mineral Resource Model (MRM) used as the basis for the reporting Mineral Resources has been regularised to create the selective mining unit (SMU) model. Red 5 Limited has re-classified the Mineral Resource classification in the SMU model to fairly and transparently reflect the approach taken to define the mineral resource classification in the MRM.
	• The economically evaluated mineralised blocks used only the gold grade to determine the block revenue.
	• The Mineral Resource classifications have been applied to the SMU based on consideration of the confidence in the geological interpretation, the quality and quantity of the input data, the confidence in the estimation technique, and the likely economic viability of the mineralised material.
Site visits	• The Competent Person is a full-time employee of Red 5 Limited and conducts regular site visits.
Study status	 A Final Feasibility Study was completed for the King of the Hills development project in FY2021, which includes the Rainbow Open Pit, refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022.". The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions. The life-of-mine plan for the operation is updated annually.
Cut-off parameters	• A break-even type of analysis was used to determine the cut-off grade applied in the Ore Reserve estimate.
	• This is the grade that returns a total revenue that is equal to the sum of the costs directly attributable to ore including the processing and selling costs. Blocks that were below breakeven grade (0.4 g/t Au) were classified as waste.
Mining factors or assumptions	• Ore loss and dilution have been incorporated through the regularisation of the mineral resource model to a selective mining unit (SMU) size which is commensurate with the mining methods and equipment being utilised. An SMU size of 10m long by 5m wide by 5m high has been used.
	• The geotechnical parameters used for the initial design were defined by independent consultants Peter O'Bryan and Associates. The resulting final design has subsequently been reviewed by the team that developed the parameters and found to be compliant.
	• A hydrogeological report has been prepared by independent consultants Big Dog Hydrogeology.
	• The mining method used is contractor based using established methods with small-medium scale open pit mining equipment.
	Red 5 Limited will retain direct control of ore quality.
	Inferred mineral resources are classified as waste.

	• The ultimate pit is based on an optimisation using Whittle software. The pit design was modified to constrain the design within the Red 5 mining tenement.
	• The ultimate pit design has been used to generate this Ore Reserve.
Metallurgical factors or assumptions	• Ore is to be processed on site at the King of the Hills processing plant. The processing plant comprises a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL-type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The technology associated with processing is currently in operation and is based on industry standard practices.
	• Mine production and cash flow estimates are based on a metallurgical recovery of 91.5%, which is consistent with current performance of the plant and supported by testwork on samples from the Rainbow deposit.
	• A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY2023.
Environmental	• The King of the Hills mining and processing hub is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
	• All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
	• Heritage zones restrict access in some areas of the tenement. Mining and waste dumping must not occur within Heritage zones.
	• Groundwater monitoring occurs via existing and additional monitoring bores associated with tailings facilities and groundwater abstraction.
	No potentially acid-forming materials have been identified.
	• No threatened or endangered flora or fauna species have been identified within the proposed disturbance areas.
Infrastructure	• The project area is well served with infrastructure.
	• Access to the site from the sealed Goldfields Highway is via an 8km all- weather mine access road.
	• Raw and process water is sourced from KOTH mine dewatering and the established Sullivan Creek and Rainbow Borefield.
	• Unskilled and skilled labour is sourced from the local area, where possible, or through Fly In Fly Out labour pool.
	• Accommodation is provided at the KOTH campsite located within the tenements, close to the Goldfields Highway.
	• Communications are present at the site, including Telstra optic fibre and mobile networks.
	• All other equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited.
Costs	• All costs used in the estimation of Ore Reserves are based on the Life-of- Mine plan.

	• Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board.
	• Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT).
	• Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan.
	• Royalties have been included at the WA government royalty of 2.5% of gold produced. A royalty payable to a third party (Royal Gold Inc.) is also applied to the King of the Hills tenements, including Rainbow, and is applied at 1.5% of gold produced.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
	• The ultimate pit design is based on a Whittle pit shell at a Revenue Factor of 1.00 times the applied gold metal price of AU\$2,400/oz.
	• The assumptions on revenue and associated value drivers are supported by Life-of-Mine plan.
	• As part of Red 5 Limited's annual budgeting process, a sensitivity analysis for mining cost, processing cost, overall slope angle, ore loss, dilution, gold selling price and metal process recovery was completed.
Market assessment	 All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining.
Economic	 A Final Feasibility Study was completed for the King of the Hills development project, which includes the Rainbow Open Pit, in FY2021. refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions. Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	• Red 5 Limited's social licence to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community of Leonora. Red 5 Limited also recognises, and has a good relationship with, the Aboriginal groups within the Leonora Region. Formal Access and/or Heritage Protection Agreements exist with most of the Aboriginal groups in the Leonora and the eastern Kalgoorlie Region.
Other	• The King of the Hills mining and processing hub is an operating asset in full production. All other required government and statutory permits and approvals are in place.
	• A company risk register is maintained to address and mitigate against all foreseeable risks that could impact the Ore Reserve.
	• Contracts are in place for all critical goods and services required to operate the mine.
Classification	• The Ore Reserve includes only Probable classification material.
	• The economically minable component of the Indicated Mineral Resource has been classified as a Probable Ore Reserve.
Audits or reviews	• The Rainbow Open Pit Ore Reserve has been internally peer-reviewed.
	• In FY2021, SRK prepared for Red 5 the initial Rainbow Ore Reserve as part of the Ore Reserve for the KOTH mining and processing hub. Refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and

	confirming a clear pathway to production in 2022." The Ore Reserve process is consistent with that used in the Final Feasibility Study.
	• Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	• The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the estimates contained fall with the criteria of Probable Ore Reserves. Historical operations and subsequent studies and assessments support the modifying factors applied.
	• The Ore Reserve has been estimated in line with the Red 5 Limited's Ore Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current Rainbow Open Pit reserve.

Centauri

	• The ultimate pit is based on an optimisation using Whittle software. The pit design was modified to constrain the design within the Red 5 mining tenement.
	• The ultimate pit design has been used to generate this Ore Reserve.
Metallurgical factors or assumptions	• Ore is to be processed on site at the King of the Hills processing plant. The processing plant comprises a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL-type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The technology associated with processing is currently in operation and is based on industry standard practices.
	• Mine production and cash flow estimates are based on a metallurgical recovery of 91.5%, which is consistent with current performance of the plant and supported by testwork on samples from the Centauri deposit.
	• A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY2023.
Environmental	• The King of the Hills mining and processing hub is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
	• All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
	• Groundwater monitoring occurs via existing and additional monitoring bores associated with tailings facilities and groundwater abstraction.
	• No potentially acid-forming materials have been identified.
	• No threatened or endangered flora or fauna species have been identified within the proposed disturbance areas.
Infrastructure	• The project area is well served with infrastructure.
	• Access to the site from the sealed Goldfields Highway is via an 8km all- weather mine access road.
	• Raw and process water is sourced from KOTH mine dewatering and the established Sullivan Creek and Rainbow Borefield.
	• Unskilled and skilled labour is sourced from the local area, where possible, or through Fly In Fly Out labour pool.
	• Accommodation is provided at the KOTH campsite located within the tenements, close to the Goldfields Highway.
	• Communications are present at the site, including Telstra optic fibre and mobile networks.
	• All other equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited.
Costs	• All costs used in the estimation of Ore Reserves are based on the Life-of-Mine plan.
	• Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board.

	• Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT).
	• Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan.
	• Royalties have been included at the WA government royalty of 2.5% of gold produced. A royalty payable to a third party is also applied to the King of the Hills tenements, including Centauri, and is applied at 1.5% of gold produced.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
	• The ultimate pit design is based on a Whittle pit shell at a Revenue Factor of 1.00 times the applied gold metal price of AU\$2,400/oz.
	• The assumptions on revenue and associated value drivers are supported by Life-of-Mine plan.
	• As part of Red 5 Limited's annual budgeting process, a sensitivity analysis for mining cost, processing cost, overall slope angle, ore loss, dilution, gold selling price and metal process recovery was completed.
Market assessment	• All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining.
Economic	 A Final Feasibility Study was completed for the King of the Hills development project, which includes the Centauri Open Pit, in FY2021, refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions. Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	• Red 5 Limited's social licence to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community of Leonora. Red 5 Limited also recognises, and has a good relationship with, the Aboriginal groups within the Leonora Region. Formal Access and/or Heritage Protection Agreements exist with most of the Aboriginal groups in the Leonora and the eastern Kalgoorlie Region.
Other	• The King of the Hills mining and processing hub is an operating asset in full production. All other required government and statutory permits and approvals are in place.
	• A company risk register is maintained to address and mitigate against all foreseeable risks that could impact the Ore Reserve.
	• Contracts are in place for all critical goods and services required to operate the mine.
Classification	• The Ore Reserve includes only Probable classification material.
	• The economically minable component of the Indicated Mineral Resource has been classified as a Probable Ore Reserve.
Audits or reviews	• The Centauri Open Pit Ore Reserve has been internally peer-reviewed.
	• In FY2021, SRK prepared for Red 5 the initial Centauri Ore Reserve as part of the Ore Reserve for the KOTH mining and processing hub. Refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The Ore Reserve process is consistent with that used in the Final Feasibility Study.

	• Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	• The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the estimates contained fall with the criteria of Probable Ore Reserves. Historical operations and subsequent studies and assessments support the modifying factors applied.
	• The Ore Reserve has been estimated in line with the Red 5 Limited's Ore Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current Centauri Open Pit reserve.

SECTION 4 ESTIMATION AND REPORTING OF ORE RESERVES

Cerebus-Eclipse

Criteria	Comments
Mineral Resource estimate for conversion to Ore Reserves	 The Mineral Resources are reported inclusive of the Ore Reserve. Red 5 Limited has reported a Mineral Resource estimate for Cerebus and Eclipse deposits in Western Australia, in accordance with the JORC Code 2012. For the purposes of mine planning and estimation of Ore Reserves, the Mineral Resource Model (MRM) used as the basis for the reporting Mineral Resources has been regularised to create the selective mining unit (SMU) model. Red 5 Limited has re-classified the Mineral Resource classification in the SMU model to fairly and transparently reflect the approach taken to define the mineral resource classification in the MRM. The economically evaluated mineralised blocks used only the gold grade to determine the block revenue. The Mineral Resource classifications have been applied to the SMU based on consideration of the confidence in the geological interpretation, the quality and quantity of the input data, the confidence in the estimation technique, and the likely economic viability of the mineralised material.
Site visits	• The Competent Person is a full-time employee of Red 5 Limited and conducts regular site visits.
Study status	 A Final Feasibility Study was completed for the King of the Hills development project, which includes the Cerebus and Eclipse Open Pits, in FY2021, refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022."The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions. The life-of-mine plan for the operation is updated annually.
Cut-off parameters	 A break-even type of analysis was used to determine the cut-off grade applied in the Ore Reserve estimate. This is the grade that returns a total revenue that is equal to the sum of the costs directly attributable to ore including the processing and selling costs. Blocks that were below breakeven grade (0.4 g/t Au) were classified as waste.
Mining factors or assumptions	 Ore loss and dilution have been incorporated through the regularisation of the mineral resource model to a selective mining unit (SMU) size which is commensurate with the mining methods and equipment being utilised. An SMU size of 5m long by 5m wide by 5m high has been used. The geotechnical parameters used for the initial design were defined by independent consultants Peter O'Bryan and Associates. The resulting final design has subsequently been reviewed by the team that developed the parameters and found to be compliant. A hydrogeological report has been prepared by independent consultants Big Dog Hydrogeology. The mining method used is contractor based using established methods with small-medium scale open pit mining equipment. Red 5 Limited will retain direct control of ore quality. Inferred mineral resources are classified as waste.

	• The ultimate pit is based on an optimisation using Whittle software. The pit design was modified to constrain the design within the Red 5 mining tenement.
	• The ultimate pit design has been used to generate this Ore Reserve.
Metallurgical factors or assumptions	• Ore is to be processed on site at the King of the Hills processing plant. The processing plant comprises a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL-type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The technology associated with processing is currently in operation and is based on industry standard practices.
	• Mine production and cash flow estimates are based on a metallurgical recovery of 91.5%, which is consistent with current performance of the plant and supported by testwork on samples from the Cerebus and Eclipse deposits.
	• A recent study on capacity requirements of the tailings storage facility (TSF) showed that the total capacity that will be created (new lifts and void created by reclaiming) will be adequate for the life-of-mine plan. The construction and commissioning of TSF5 was completed in FY23.
Environmental	• The King of the Hills mining and processing hub is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
	• All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
	• Groundwater monitoring occurs via existing and additional monitoring bores associated with tailings facilities and groundwater abstraction.
	No potentially acid-forming materials have been identified.
	• No threatened or endangered flora or fauna species have been identified within the proposed disturbance areas.
Infrastructure	• The project area is well served with infrastructure.
	• Access to the site from the sealed Goldfields Highway is via an 8km all- weather mine access road.
	• Raw and process water is sourced from KOTH mine dewatering and the established Sullivan Creek and Rainbow Borefield.
	• Unskilled and skilled labour is sourced from the local area, where possible, or through Fly In Fly Out labour pool.
	• Accommodation is provided at the KOTH campsite located within the tenements, close to the Goldfields Highway.
	• Communications are present at the site, including Telstra optic fibre and mobile networks.
	• All other equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited.
Costs	• All costs used in the estimation of Ore Reserves are based on the Life-of-Mine plan.
	• Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board.

	• Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT).
	• Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan.
	• Royalties have been included at the WA government royalty of 2.5% of gold produced. A royalty payable to a third party is also applied to the King of the Hills tenements, including Cerebus and Eclipse, and is applied at 1.5% of gold produced.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
	• The ultimate pit design is based on a Whittle pit shell at a Revenue Factor of 1.00 times the applied gold metal price of AU\$2,400/oz.
	• The assumptions on revenue and associated value drivers are supported by Life-of-Mine plan.
	• As part of Red 5 Limited's annual budgeting process, a sensitivity analysis for mining cost, processing cost, overall slope angle, ore loss, dilution, gold selling price and metal process recovery was completed.
Market assessment	• All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining.
Economic	• A Final Feasibility Study was completed for the King of the Hills development project, which includes the Cerebus and Eclipse Open Pits, in FY2021, refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The FFS demonstrated that the mine plan is technically achievable and economically viable under the current assumptions.
	• Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	• Red 5 Limited's social licence to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community of Leonora. Red 5 Limited also recognises, and has a good relationship with, the Aboriginal groups within the Leonora Region. Formal Access and/or Heritage Protection Agreements exist with most of the Aboriginal groups in the Leonora and the eastern Kalgoorlie Region.
Other	• The King of the Hills mining and processing hub is an operating asset in full production. All other required government and statutory permits and approvals are in place.
	• A company risk register is maintained to address and mitigate against all foreseeable risks that could impact the Ore Reserve.
	• Contracts are in place for all critical goods and services required to operate the mine.
Classification	• The Ore Reserve includes only Probable classification material.
	• The economically minable component of the Indicated Mineral Resource has been classified as a Probable Ore Reserve.
Audits or reviews	 The Cerebus and Eclipse Open Pit Ore Reserve has been internally peer-reviewed. In FY2021, SRK prepared for Red 5 the initial Cerebus and Eclipse Ore Reserve as part of the Ore Reserve for the KOTH mining and processing hub. Refer to ASX release dated 15 September 2020, titled "KOTH Final Feasibility Study delivers 2.4Moz Ore Reserve, underpinning an initial 16-year mine life and confirming a clear pathway to production in 2022." The Ore Reserve process is consistent with that used in the Final Feasibility Study.

	• Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	• The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the estimates contained fall with the criteria of Probable Ore Reserves. Historical operations and subsequent studies and assessments support the modifying factors applied.
	• The Ore Reserve has been estimated in line with the Red 5 Limited's Ore Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current Cerebus and Eclipse Open Pit reserve.

JORC TABLE 1's Section 4 for DARLOT GOLD PROJECT

SECTION 4 ESTIMATION AND REPORTING OF ORE RESERVES

Darlot

Criteria	Comments						
Mineral Resource estimate for conversion to Ore Reserves	 The Mineral Resource estimate covers the Centenary Combined, Pederson, Lord South Lower, CDA Oval and Burswood – Part of the Darlot Deposit. The mineral resource estimates were completed on the individual models from which the reserve estimate was completed using data on actual mining and processing costs at Darlot. The Mineral Resources are reported inclusive of the Ore Reserve. 						
Site visits	• The Competent Person is a full-time employee of Red 5 Limited and conducts regular site visits.						
Study status	 The Darlot Underground Gold Mine has been operated continuously since 1995 with operating parameters well understood. A Pre-Feasibility Study standard study was undertaken to using actual Darlot Mining, Processing and Administration costs to assess the economic viability of mining extensions to existing work areas. Material Modifying Factors have been assessed. The life-of-mine plan for the operation is updated annually. 						
Cut-off parameters	 A break-even type analysis was used to determine the COG used in the Ore Reserve estimate. BECOG includes all costs associated with the extraction and processing of ore material SECOG is used as the basis for defining economic stope areas on a level. It covers all mining costs (excluding capital development), processing costs and site general & administration costs SOCOG applies to all material that does not require additional development POCOG only covers the surface haulage and processing costs 						
Mining factors or assumptions	 The Darlot Underground Ore Reserve has been estimated based on detailed mine development and stope designs. Modifying factors for dilution and mining recovery have been applied post-geological interrogation to generate the final diluted and recovered Ore Reserve. Selected mining method deemed appropriate based on geotechnical advice and previous experience and history at Darlot. Assumptions have been based on actual mining performance at Darlot with Geotechnical Assessments undertaken over the years to develop a comprehensive ground support and reinforcement regime for conditions encountered at Darlot. Stopes have been designed based on an economic cut-off. Mining dilution of 10 to 20% has been used. Mining recovery factor of 90 to 95% is applied. A global minimum mining width of 2.5m is used. Outlines are designed to honour the minimum width and include planned dilution. 						

	• The profiles of development excavations have been designed inclusive of 10% overbreak. No further dilution factors or mining recovery factors have been applied to development ore.
	• Designed stopes with greater than 50% inferred blocks are excluded from the reported reserve.
	• Darlot is an operating underground mine and as such all the required infrastructure is in place and operational. Minor Capital Development will be required to extract all of the ore reserve.
	• The infrastructure requirements of the stoping methods used are either already in place or have been accounted for in the Life-of-Mine evaluation on which the project costings are based.
Metallurgical factors or assumptions	• All Darlot ore is trucked to the King of the Hills processing plant. The processing plant consists of a single stage gyratory crushing circuit, single-stage SAG mill circuit and hybrid carbon-in-leach (CIL) circuit with two designated leach tank and six adsorption tanks. Gold is recovered from activated carbon into concentrated solution via a split AARL type elution circuit. Electrowinning and smelting are conducted in an adjacent secure gold room. The tailings from the process are deposited into a dedicated tails storage facility consisting of multiple cells with multi-spigot distribution and decant return pumping system.
	• The King of the Hills processing plant is currently operating and is a conventional design.
	• No additional testwork was undertaken as all the ore reserve is contained within previously mined orebodies which were processed at the Darlot processing plant which is now on care and maintenance with ore now being transported to and processed at King of the Hills processing plant.
	• Recoveries through the King of the Hills processing plant have average 91.5%.
	• There have been no deleterious elements identified while processing Darlot ore.
	• Recovery based on actual historical performance.
Environmental	• The Darlot Underground mine is currently compliant with all environmental regulatory agreements under the Environmental Protection Act 1986.
	• Mine waste is currently stored within the open pit or used to backfill completed stopes. All government permits and licenses and statutory approvals are in place for this operating mine.
	• All external reporting against the environmental licenses are recorded and reported in the Annual Environmental Report available on the Red 5 Limited's website.
Infrastructure	• Darlot is a well-established gold mine and has all the required infrastructure in place including a 400 person accommodation village, process plant, offices and workshops, airstrip, water supply and road access.
	• All other equipment required for the mining and processing of the Ore Reserve is in place and operational. It is located on tenements held by Red 5 Limited. The infrastructure includes, but is not limited to:
	 Dedicated gas and diesel power station
	 Water supply from three sources to provide redundancy
	 Mine development
	 Underground power and dewatering infrastructure
	 Workshop facilities on surface and underground
	 Ventilation fans
	 Camp facilities

	 Access to public roads
Costs	 All costs used in the estimation of Ore Reserves are based on the Life-of-Mine plan. Operating costs are estimated as part of the internal budgeting process and approved by the Red 5 Limited board. Exchange rates are sourced from recommendations by the Group Treasury and accepted by the Executive Leadership Team (ELT). Costs associated with treatment and transport have been included in the cost modelling completed for the project based on the Life-of-Mine plan. Royalties have been included at the WA government royalty of 2.5% of gold produced.
Revenue factors	• A gold price of AU\$2,400/oz has been used in all revenue calculations.
Market assessment	 All gold doré produced at the King of the Hills processing plant is transported to the Perth Mint for refining. Historical gold price and forward looking estimates have been used for the gold price.
Economic	 The mine is an operating asset and is not subject to project-type analysis. Life-of-Mine plans are developed or updated on an annual basis. These plans reflect current and projected performances for the Ore Reserve.
Social	 Red 5 Limited's social license to operate is underpinned by the excellent relationship that the Company has built, over many years, with the local community. Darlot and the majority of the Darlot tenements are located on the underlying Melrose Pastoral Lease PL N049788. The Company is the leaseholder and owner/operator of the Melrose Pastoral Station. To the Company's best knowledge, there is no current or impending litigation concerning Darlot.
Other	 The Darlot Underground mine is an operating asset in full production. All other required government and statutory permits and approvals are in place. A company risk register is maintained to address and mitigate against all foreseeable risks that could impact the Ore Reserve. Contracts are in place for all critical goods and services required to operate the mine.
Classification	 The Ore Reserve includes only Proved and Probable classifications. The economically minable component of the Measured Mineral Resource has been classified as a Proved Ore Reserve. The economically minable component of the Indicated Mineral Resource has been classified as a Probable Ore Reserve.
Audits or reviews	 There have been no external reviews of this Ore reserve estimate. An external peer-review will be organised for later in 2023, in-line with Red 5 Limited's policies. Red 5 Limited considers the processes to align with industry standard and comply with the reporting requirements of the JORC Code.
Discussion of relative accuracy/ confidence	• The Ore Reserve estimate has been prepared in accordance with the guidelines of the JORC Code (2012). The relative confidence of the

estimates contained fall with the criteria of Proved and Probable Ore Reserves. Significant operating history supports the modifying factors applied.

• The Ore Reserve has been estimated in line with the Red 5 Limited's Ore Reserve process. The Ore Reserve has been peer reviewed internally and the Competent Person is confident that it is an accurate estimation of the current Darlot Underground reserve.

KING OF THE HILLS GOLD MINE

Drill Collar Locations of reported assays since June 2022 Resource model release used for the 30 June 2023 KOTH Resource model update.

July 2022 model update for the database close off was 12 July 2022.

30 June 2023 Resource model update for the database close off was 25 May 2023.

30 June 2023 Grade Control model update for the database close off was 19 July 2023.

 Table 1
 Drill collar locations for underground exploration holes (KHRD series).

Drill Hole ID	East	North	RL	Dip	Azimuth	Depth
KHRD0538	50843.768	11107.229	4878.554	1.0	111.7	125.6
KHRD0539	50843.620	11107.196	4877.924	-6.3	112.0	123
KHRD0540	50843.701	11107.198	4877.752	-16.6	111.8	128.2
KHRD0644	50834.318	11110.355	4878.785	8.1	21.2	198
KHRD0645	50834.413	11110.292	4878.723	3.2	25.1	200.7
KHRD0646	50834.367	11110.290	4878.987	7.0	27.7	173.7
KHRD0647	50833.793	11110.827	4879.132	13.3	31.0	180
KHRD0648	50833.893	11110.881	4878.616	2.8	34.9	171
KHRD0650	50833.884	11110.824	4879.076	11.3	38.1	183.5
KHRD0651	50834.472	11110.247	4878.996	6.6	38.4	192
KHRD0652	50833.985	11110.841	4878.616	1.9	45.9	120
KHRD0737	50747.281	10599.397	4955.846	-10.5	89.7	117
KHRD0738	50747.237	10599.393	4955.624	-17.2	90.0	111
KHRD0739	50747.171	10599.292	4955.274	-32.1	90.4	111
KHRD0741	50747.439	10584.201	4956.785	-11.8	90.1	117
KHRD0742	50747.264	10584.066	4956.731	-20.7	89.8	102
KHRD0743	50747.109	10584.115	4956.239	-29.5	90.0	96
KHRD0744	50747.038	10584.123	4956.144	-42.9	90.3	111.1
KHRD0745	50747.017	10584.057	4956.071	-53.0	89.6	144.1
KHRD0755	50745.337	10555.000	4960.800	-51.4	89.7	129
KHRD0756	50745.247	10554.525	4959.330	-64.7	89.9	138
KHRD0757	50742.994	10515.601	4963.138	-64.4	45.8	135.2
KHRD0758	50744.989	10540.368	4961.915	-15.0	90.0	123
KHRD0759	50744.923	10540.191	4961.619	-26.0	90.2	117
KHRD0760	50745.169	10540.049	4961.150	-41.9	90.0	174
KHRD0761	50744.984	10540.289	4961.055	-60.0	89.8	156.12
KHRD0762	50745.063	10540.187	4960.995	-68.9	89.8	154.5
KHRD0763	50742.993	10515.462	4963.122	-73.7	57.7	185.8
KHRD0768	50744.360	10524.717	4962.761	-57.8	90.2	162.2
KHRD0769	50743.522	10516.246	4963.157	-66.1	83.8	188.12
KHRD0770	50743.418	10516.300	4963.164	-79.2	75.0	179
KHRD0774	50743.500	10510.000	4964.900	-60.7	90.0	114
KHRD0775	50743.395	10516.147	4963.216	-70.9	95.6	207
KHRD0776	50743.364	10516.133	4963.169	-80.1	101.2	204
KHRD0777	50743.400	10495.090	4966.228	-14.2	90.0	105
KHRD0778	50743.539	10495.084	4965.947	-27.3	90.0	104
KHRD0779	50743.436	10495.128	4965.839	-39.4	89.7	105
KHRD0780	50743.359	10516.022	4963.164	-62.0	117.5	146.4
KHRD0781	50743.439	10515.921	4963.156	-74.1	115.2	195
KHRD0782	50742.812	10515.522	4963.126	-82.3	146.6	219
KHRD0783	50742.561	10478.900	4968.229	-14.5	87.0	114

Drill Hole ID	East	North	RL	Dip	Azimuth	Depth
KHRD0784	50742.486	10478.896	4968.087	-25.0	90.0	105
KHRD0785	50742.400	10480.000	4968.400	-47.3	90.1	105
KHRD0786	50742.400	10480.000	4968.400	-62.0	90.0	102.2
KHRD0787	50742.689	10515.489	4963.137	-68.0	148.0	4.5
KHRD0787A	50743.032	10517.007	4963.329	-68.1	147.8	192
KHRD0788	50742.832	10515.405	4963.100	-78.9	159.9	204
KHRD0789	50742.279	10464.889	4969.987	-3.7	90.1	98.9
KHRD0790	50742.100	10465.000	4969.600	-33.3	89.9	87
KHRD0791	50742.100	10465.000	4969.600	-44.8	89.6	84
KHRD0792	50742.100	10465.000	4969.600	-56.9	90.3	87
KHRD0793	50742.100	10465.000	4969.600	-70.7	89.9	96
KHRD0794	50742.100	10465.000	4969.600	-82.5	90.4	114
KHRD0795	50741.900	10450.000	4971.800	-31.8	90.2	87
KHRD0796	50741.900	10450.000	4971.800	-55.4	89.5	80.8
KHRD0797	50741.900	10450.000	4971.800	-73.8	90.2	105
KHRD0798	50741.900	10450.000	4971.800	-83.7	90.3	114
KHRD0799	50741.600	10435.000	4973.700	-51.3	90.1	87
KHRD0800	50741.600	10435.000	4973.700	-66.9	90.1	96.1
KHRD0801	50741.600	10435.000	4973.700	-76.6	90.3	113
KHRD0802	50727.900	10420.000	4973.200	-38.5	90.2	84.1
KHRD0803	50727.900	10420.000	4973.200	-56.4	90.1	87.2
KHRD0804	50727.900	10420.000	4973.200	-70.9	89.9	99.13
KHRD0805	50741.233	10432.087	4972.257	-84.0	160.0	35
KHRD0806	50744.850	10540.387	4962.470	3.5	90.0	129.15
KHRD0807	50741.600	10435.000	4973.700	-31.3	89.8	82.4
KHRD0808	50728.144	10419.880	4973.493	-10.6	110.0	69
KHRD0809	50728.085	10420.035	4972.657	-30.9	110.0	72
KHRD0810	50727.988	10420.102	4972.586	-47.4	110.0	102
KHRD0810A	50727.988	10420.102	4972.586	-47.0	110.0	4.5
KHRD0812	50747.282	10614.821	4954.854	7.8	86.6	150
KHRD0813	50832.059	11111.479	4878.596	2.6	5.0	194.1
KHRD0814	50832.089	11111.646	4878.508	-1.0	10.0	233.6
KHRD0815	50831.387	11111.006	4878.389	4.8	15.3	195.14
KHRD0816	50831.425	11111.082	4878.184	-5.3	18.8	309
KHRD0817	50833.094	11111.390	4878.345	-1.0	22.2	222.3
KHRD0818	50833.180	11111.420	4878.348	-3.9	25.0	233.7
KHRD0819	50743.585	10509.092	4965.500	-0.6	90.1	141
KHRD0820	50743.273	10495.064	4966.776	-0.7	90.1	120
KHRD0821	50742.538	10478.945	4968.540	-1.9	88.9	120
KHRD0822	50462.289	10308.487	5106.170	-4.8	279.1	240.4
KHRD0823	50462.137	10308.428	5106.408	3.0	275.0	203.6
KHRD0824	50462.205	10308.326	5106.199	-1.3	273.8	159
KHRD0825	50462.104	10308.414	5106.907	11.0	270.0	135
KHRD0826	50462.066	10308.308	5106.327	-6.0	268.0	141.14
KHRD0827	50461.975	10308.367	5106.367	-0.8	266.3	137.6
KHRD0828	50461.911	10308.371	5106.727	11.0	264.4	120
KHRD0829	50462.313	10308.727	5106.315	-5.0	258.0	195.5
KHRD0830	50462.977	10307.417	5105.938	-8.5	242.2	117.1
KHRD0831	50466.574	10304.768	5106.254	-5.7	237.8	264.8
KHRD0832	50467.096	10304.289	5106.463	-1.0	215.5	123
KHRD0833	50365.623	10138.928	5133.061	26.1	285.1	49.92

Drill Hole ID	East	North	RL	Dip	Azimuth	Depth
KHRD0834	50365.467	10137.283	5133.085	24.9	239.9	26.7
KHRD0835	50368.332	10135.473	5132.998	22.4	203.9	44.8
KHRD0836	50368.534	10135.353	5132.930	16.0	188.7	54
KHRD0837	50368.786	10135.641	5131.807	2.2	187.1	120
KHRD0838	50405.048	10179.186	5125.281	-25.0	97.6	54
KHRD0839	50404.972	10179.109	5125.934	-2.0	101.0	48.25
KHRD0840	50405.114	10179.382	5125.708	-15.7	81.5	38.8
KHRD0841	50405.188	10179.398	5126.908	17.6	80.6	48
KHRD0842	50405.231	10179.359	5125.291	-42.7	77.6	52.83
KHRD0843	50416.684	10207.502	5120.949	-29.9	131.2	36
KHRD0844	50416.822	10208.068	5120.610	-39.8	48.2	21.05
KHRD0845	50430.294	10241.313	5115.558	-14.4	257.2	45
KHRD0846	50430.204	10241.255	5115.792	2.7	271.0	46.2
KHRD0847	50430.829	10241.737	5116.568	22.3	263.6	45
KHRD0848	50440.149	10253.369	5115.244	15.6	267.2	60
KHRD0849	50440.036	10253.371	5114.777	2.8	270.9	66
KHRD0850	50440.177	10253.633	5114.708	1.2	280.0	75
KHRD0851	50440.228	10253.594	5114.574	2.7	288.5	90
KHRD0852	50838.660	10910.900	4957.090	9.0	92.0	87.1
KHRD0853	50838.660	10910.900	4957.090	6.9	103.9	95.4
KHRD0854	50838.660	10910.900	4957.090	0.2	104.5	84
KHRD0855	50838.660	10910.900	4957.090	-8.2	104.3	114
KHRD0856	50836.620	10908.930	4957.270	8.1	111.5	84
KHRD0857	50836.620	10908.930	4957.270	9.0	130.0	82
KHRD0858	50836.620	10908.930	4957.270	-5.9	130.1	87
KHRD0859	50836.620	10908.930	4957.270	12.8	145.8	49
KHRD0860	50836.620	10908.930	4957.270	-1.3	146.2	96.3
KHRD0861	50828.093	10757.937	5035.262	-1.7	133.0	123
KHRD0862	50828.796	10758.719	5035.286	1.3	125.0	116
KHRD0863	50828.824	10758.744	5035.282	-2.6	115.9	105.1
KHRD0864	50515.434	10300.918	5103.680	-20.9	79.8	194.5
KHRD0865	50515.553	10300.701	5103.593	-15.2	83.3	180
KHRD0866	50515.372	10300.938	5104.224	-9.4	84.7	228.6
KHRD0867	50515.489	10300.723	5103.730	-21.1	86.3	207
KHRD0868	50515.374	10300.741	5103.934	-13.8	88.0	222.4
KHRD0869	50515.479	10300.592	5104.290	-9.0	90.7	228.5
KHRD0870	50515.420	10300.595	5103.362	-21.4	91.6	225.3
KHRD0871	50515.356	10300.522	5103.398	-15.0	94.4	222.6
KHRD0872	50515.360	10300.521	5103.398	-20.0	97.0	214
KHRD0873	50515.293	10300.553	5104.071	-9.9	97.2	221
KHRD0874	50515.283	10300.557	5103.889	-14.8	99.1	212
KHRD0875	50846.836	10675.762	5037.348	-10.3	111.9	69.2
KHRD0876	50846.368	10675.472	5038.101	2.8	125.6	60.3
KHRD0877	50846.056	10675.470	5037.131	-21.7	125.7	69
KHRD0878	50846.044	10675.356	5037.412	-8.0	138.0	66
KHRD0879	50846.027	10675.430	5037.153	-17.4	146.9	81
KHRD0880	50846.037	10675.309	5037.886	3.6	147.2	81.1
KHRD0881	50845.565	10675.019	5037.897	1.7	160.1	60
KHRD0882	50845.523	10674.928	5038.522	19.0	165.0	72
KHRD0883	50843.848	10674.375	5038.615	15.8	176.6	47.28
KHRD0884	50843.741	10674.430	5038.577	17.2	185.4	42

Drill Hole ID	East	North	RL	Dip	Azimuth	Depth
KHRD0885	50843.702	10674.277	5038.870	21.8	198.8	33.8
KHRD0886	50843.296	10674.816	5038.071	7.0	202.0	39
KHRD0889	50827.393	11160.542	4869.572	-4.7	188.0	306
KHRD0890	50827.302	11160.728	4869.514	1.4	185.1	312.2
KHRD0891	50827.377	11160.642	4869.492	-2.2	184.7	309.2
KHRD0894	50827.483	11160.557	4869.450	-5.5	181.9	309.6
KHRD0899	50827.484	11160.578	4869.620	4.3	172.2	376
KHRD0905	50842.429	11159.749	4869.437	4.2	168.0	399.6
KHRD0907	50842.228	11159.676	4869.390	-2.4	168.0	310
KHRD0908	50842.324	11159.797	4869.703	4.4	165.0	397
KHRD0909	50842.441	11159.745	4869.720	1.2	165.2	322.6
KHRD0911	50843.266	11159.920	4869.925	3.8	161.8	384
KHRD0913	50842.228	11159.812	4869.751	-2.1	161.9	322.7
KHRD0915	50861.518	11161.633	4869.930	4.0	163.0	375.4
KHRD0917	50861.684	11161.764	4869.955	2.0	162.2	318.4
KHRD0918	50861.785	11161.780	4869.956	4.9	159.6	369
KHRD0920	50861.657	11161.740	4869.223	-2.6	160.0	325
KHRD0924	50880.118	11166.757	4870.340	4.4	158.9	327.4
KHRD0925	50880.007	11166.693	4870.308	0.6	158.8	345.4
KHRD0928	50880.159	11166.655	4870.106	-1.7	156.1	350.8
KHRD0929	50880.251	11166.788	4870.279	0.8	153.9	341
KHRD0930	50880.331	11166.593	4870.104	-1.4	151.7	334.9
KHRD0931	50511.967	10304.342	5104.649	12.3	20.2	264
KHRD0932	50511.898	10304.400	5104.695	12.1	11.1	282
KHRD0933	50511.871	10304.408	5104.848	15.4	2.1	307.3
KHRD0934	50511.877	10304.379	5104.566	12.6	0.4	291
KHRD0935	50784.172	10812.825	4893.734	41.0	269.8	37
KHRD0936	50784.013	10812.588	4892.043	17.9	270.0	39.4
KHRD0937	50783.842	10812.399	4891.321	0.9	270.0	45.4
KHRD0938	50782.763	10791.712	4891.614	57.4	270.0	36.1
KHRD0939	50781.850	10792.559	4889.681	30.2	269.6	44.1
KHRD0940	50781.865	10792.461	4888.450	6.9	270.0	46
KHRD0941	50781.018	10772.628	4888.112	46.0	269.7	39
KHRD0942	50780.676	10772.049	4886.235	17.9	269.7	41.1
KHRD0943	50780.634	10772.232	4885.726	1.9	269.7	44.2
KHRD0945	50803.805	10786.365	4887.741	3.4	53.7	137.7
KHRD0946	50803.931	10786.093	4887.748	5.4	61.0	137
KHRD0947	50803.941	10786.093	4887.826	13.7	76.4	141
KHRD0948	50803.779	10785.972	4887.759	7.4	82.0	138
KHRD0949	50784.940	10762.167	4885.390	18.1	78.9	120
KHRD0950	50784.898	10762.083	4885.333	24.5	118.0	117
KHRD0951	50785.077	10762.202	4884.990	15.0	114.0	89.7
KHRD0952	50785.036	10762.037	4885.121	17.6	134.0	92.2
KHRD0953	50615.688	10340.253	4954.336	-26.1	101.0	102.1
KHRD0954	50615.558	10340.252	4954.261	-33.4	103.4	108
KHRD0955	50615.644	10340.309	4953.996	-43.2	112.1	114.1
KHRD0956	50615.561	10340.171	4954.230	-35.6	114.3	108
KHRD0957	50615.505	10340.261	4954.138	-43.0	118.0	120.13
KHRD0958	50615.718	10339.901	4953.998	-24.0	121.0	117
KHRD0959	50615.593	10339.954	4953.921	-36.0	123.3	108
KHRD0960	50615.640	10339.806	4953.944	-49.0	125.4	148

Drill Hole ID	East	North	RL	Dip	Azimuth	Depth
KHRD0961	50615.757	10339.988	4954.861	-13.2	125.0	116.8
KHRD0962	50615.619	10338.803	4954.146	-43.0	128.0	117
KHRD0963	50615.620	10338.775	4954.211	-38.9	128.1	129
KHRD0964	50615.688	10338.781	4954.425	-21.3	128.9	141
KHRD0965	50615.695	10338.789	4954.295	-30.1	131.0	105
KHRD0966	50615.561	10338.739	4954.126	-41.7	137.7	146.8
KHRD0967	50615.515	10338.678	4954.124	-45.5	140.5	152.9
KHRD0968	50615.508	10338.530	4954.533	-27.2	143.6	169
KHRD0969	50615.562	10338.465	4954.749	-16.0	145.0	145.8
KHRD0970	50615.412	10338.490	4954.484	-32.1	146.1	141
KHRD0971	50615.386	10338.514	4954.362	-37.8	145.7	138
KHRD0972	50615.311	10338.659	4954.148	-43.6	148.1	153.1
KHRD0973	50613.894	10338.350	4954.102	-41.2	153.9	138
KHRD0974	50613.814	10338.309	4954.268	-33.0	154.0	165
KHRD0975	50614.023	10338.088	4954.795	-14.0	157.1	149
KHRD0976	50613.762	10338.142	4954.596	-23.2	158.2	153.1
KHRD0977	50613.913	10338.288	4954.343	-34.3	162.6	135
KHRD0978	50613.673	10338.244	4954.364	-26.1	165.7	153
KHRD0979	50613.642	10338.272	4954.242	-33.2	169.7	147
KHRD0981	50615.885	10339.430	4954.523	-27.7	114.2	123
KHRD0982	50615.782	10339.638	4954.576	-23.0	90.3	134.93
KHRD0983	50613.679	10338.184	4954.501	-36.0	166.0	162
KHRD0984	50615.801	10339.354	4954.250	-40.0	97.0	135
KHRD0985	50615.815	10339.439	4954.163	-43.9	90.5	150
KHRD0986	50615.702	10339.153	4954.225	-48.2	106.4	144.1
KHRD0987	50615.763	10339.439	4954.068	-51.9	97.6	135.96
KHRD0989	50615.635	10339.144	4954.112	-54.9	111.2	141.1
KHRD0992	50615.518	10338.854	4953.961	-60.1	124.5	165
KHRD0994	50615.365	10338.703	4954.142	-49.7	139.3	159.05
KHRD0995	50614.001	10338.398	4954.048	-58.1	140.2	167.6
KHRD0996	50613.958	10338.347	4954.218	-51.9	149.7	179.3
KHRD0997	50613.652	10338.355	4954.100	-48.3	150.8	170.6
KHRD0998	50613.705	10338.292	4954.266	-47.2	157.7	163.84
KHRD0999	50613.556	10338.277	4954.177	-47.5	163.9	187.5
KHRD1003	50338.643	10196.779	5135.018	-23.8	358.3	131.3
KHRD1005	50338.721	10196.668	5134.998	-30.1	8.7	113.1
KHRD1006	50338.752	10196.767	5135.242	-18.9	17.6	110.46
KHRD1009	50358.112	10155.209	5131.125	-12.6	13.7	127.7
KHRD1010	50358.093	10155.183	5131.039	-25.0	16.0	113.7
KHRD1011	50358.315	10155.019	5131.153	-12.8	21.0	113.6
KHRD1012	50358.248	10154.990	5131.072	-20.9	22.0	107.3
KHRD1013	50358.516	10154.723	5130.889	-27.1	25.0	108
KHRD1015	50358.805	10154.644	5130.725	-30.9	36.3	98.7
KHRD1017	50358.943	10154.532	5131.001	-19.1	47.0	93
KHRD1025	50329.392	10334.727	5134.058	-16.8	239.8	80.8
KHRD1026	50330.546	10334.440	5135.792	21.9	214.1	48

Significant Assays from Red 5 diamond drilling for the drilling used for the 30 June 2023 Resource model update.

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0539	71	87	16	0.97	15.52
KHRD0644	10	26.5	16.5	1.16	19.14
KHRD0644	41.5	76.5	35	1.62	56.70
KHRD0644	82.75	125.07	42.32	2.10	88.87
KHRD0645	57	74.53	17.53	2.06	36.11
KHRD0645	103	143	40	3.74	149.60
KHRD0646	3.5	15.81	12.31	12.98	159.78
KHRD0646	20	45	25	0.86	21.50
KHRD0646	54.4	60	5.6	4.38	24.53
KHRD0646	66	78.35	12.35	2.02	24.95
KHRD0646	110.1	122.5	12.4	1.10	13.64
KHRD0648	6	22.27	16.27	0.88	14.32
KHRD0648	50.7	63.73	13.03	1.76	22.93
KHRD0648	111	137	26	1.01	26.26
KHRD0650	19.2	37.9	18.7	3.98	74.43
KHRD0650	71.55	78.3	6.75	3.06	20.66
KHRD0651	3	16.15	13.15	1.08	14.20
KHRD0651	62.9	94.5	31.6	0.65	20.54
KHRD0652	74	90	16	4.74	75.84
KHRD0737	14	33.5	19.5	0.71	13.85
KHRD0739	0	12.74	12.74	0.99	12.61
KHRD0739	51	68	17	1.30	22.10
KHRD0741	0	12.5	12.5	1.34	16.75
KHRD0744	28.5	32.85	4.35	5.91	25.71
KHRD0744	53.93	72	18.07	3.66	66.14
KHRD0745	1.2	32.85	31.65	0.74	23.42
KHRD0745	52.83	74.11	21.28	3.37	71.71
KHRD0745	82	87	5	6.52	32.60
KHRD0745	93.93	105.1	11.17	4.55	50.82
KHRD0745	119.4	133	13.6	1.03	14.01
KHRD0747	6	24.5	18.5	0.67	12.40
KHRD0748	41.5	63.41	21.91	1.98	43.38
KHRD0749	22	38	16	1.29	20.64
KHRD0749	57	67.5	10.5	1.66	17.43
KHRD0755	10	32	22	0.97	21.34
KHRD0756	16.47	70	53.53	0.51	27.30
KHRD0756	92	105	13	2.18	28.34
KHRD0756	125	126	1	51.48	51.48
KHRD0757	72.92	77	4.08	3.62	14.77
KHRD0759	17	46.26	29.26	0.71	20.77
KHRD0759	70.9	77.25	6.35	10.85	68.90
KHRD0761	26.4	38	11.6	1.48	17.17
KHRD0761	98	100	2	19.81	39.62
KHRD0763	72	81	9	7.55	67.95
KHRD0768	117.5	119.88	2.38	34.07	81.09
KHRD0770	128	129	1	18.44	18.44
KHRD0775	141.7	158.91	17.21	1.20	20.65

 Table 2
 Significant intercepts >12 g/m Au gold received for underground exploration holes (KHRD series).

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0776	38	55	17	0.74	12.58
KHRD0776	141.04	147.5	6.46	52.75	340.77
KHRD0778	78.64	79.7	1.06	12.26	13.00
KHRD0783	72	80.64	8.64	7.75	66.96
KHRD0784	50.55	79	28.45	4.76	135.42
KHRD0788	50.46	71.7	21.24	0.79	16.78
KHRD0789	10	24	14	2.01	28.14
KHRD0789	28.39	47	18.61	0.72	13.40
KHRD0790	20.5	33	12.5	9.65	120.63
KHRD0790	39.5	53.36	13.86	1.48	20.51
KHRD0790	57.6	71	13.4	1.22	16.35
KHRD0792	38.5	68.48	29.98	0.66	19.79
KHRD0794	64	76.8	12.8	1.37	17.54
KHRD0795	32	62.35	30.35	0.45	13.66
KHRD0796	33	44.65	11.65	1.77	20.62
KHRD0798	86.6	88	1.4	17.28	24.19
KHRD0799	7.9	31	23.1	0.54	12.47
KHRD0800	11	47	36	1.21	43.56
KHRD0800	68	75	7	6.11	42.77
KHRD0801	23.22	49	25.78	0.90	23.20
KHRD0802	4.5	41	36.5	0.40	14.60
KHRD0802	45.1	52.5	7.4	2.44	18.06
KHRD0804	27	59	32	0.78	24.96
KHRD0807	16	54	38	0.56	21.28
KHRD0808	34	46	12	1.93	23.16
KHRD0809	21	48	27	0.76	20.52
KHRD0810	14.5	65.48	50.98	0.72	36.71
KHRD0812	121.5	127.16	5.66	3.22	18.23
KHRD0813	9.6	29.98	20.38	1.03	20.99
KHRD0813	37	183.35	146.35	1.37	200.50
KHRD0813	187.5	194.1	6.6	5.10	33.66
KHRD0814	68.22	88.4	20.18	1.51	30.47
KHRD0814	93.03	107.46	14.43	4.69	67.68
KHRD0814	113.67	154.4	40.73	3.35	136.45
KHRD0814	156.05	157	0.95	15.60	14.82
KHRD0814	164	197	33	1.25	41.25
KHRD0814	203	220	17	1.77	30.09
KHRD0815	45.9	152	106.1	1.80	190.98
KHRD0815	157	158	1	21.68	21.68
KHRD0816	7.1	24	16.9	1.20	20.28
KHRD0816	85.55	133	47.45	0.92	43.65
KHRD0816	196	239.74	43.74	0.81	35.43
KHRD0817	10	11.7	1.7	11.42	19.41
KHRD0817	45	57	12	1.18	14.16
KHRD0817	73	89	16	0.87	13.92
KHRD0817	96	109	13	2.73	35.49
KHRD0817	137.8	170.35	32.55	0.47	15.30
KHRD0818	81	107	26	0.54	14.04
KHRD0818	120	168	48	0.61	29.28
KHRD0819	90.31	96	5.69	2.99	17.01
KHRD0821	39	91.5	52.5	0.53	27.83

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0823	173	174.61	1.61	10.59	17.05
KHRD0830	100.53	100.89	0.36	44.48	16.01
KHRD0843	15.5	23	7.5	2.18	16.35
KHRD0850	59	62.16	3.16	20.11	63.55
KHRD0851	73	76.35	3.35	49.38	165.42
KHRD0853	35.5	53.85	18.35	1.45	26.61
KHRD0853	64.79	68.12	3.33	4.57	15.22
KHRD0854	13	68	55	0.90	49.50
KHRD0855	43	78.11	35.11	0.46	16.15
KHRD0855	85	90.77	5.77	100.87	582.02
KHRD0857	37.7	53.5	15.8	5.53	87.37
KHRD0857	67	77.1	10.1	10.22	103.22
KHRD0857	77.8	82	4.2	8.44	35.45
KHRD0858	59.17	65.55	6.38	3.33	21.25
KHRD0859	29	33.53	4.53	4.35	19.71
KHRD0860	26	67	41	0.64	26.24
KHRD0861	59	101	42	0.43	18.06
KHRD0861	106	111.5	5.5	2.63	14.47
KHRD0862	55	101	46	0.69	31.74
KHRD0863	39.9	76.45	36.55	2.99	109.29
KHRD0863	99	101	2	14.90	29.80
KHRD0864	75.73	80	4.27	6.34	27.07
KHRD0865	77.7	79.3	1.6	9.84	15.74
KHRD0867	81.87	82.21	0.34	96.89	32.94
KHRD0867	148.45	155.35	6.9	26.43	182.37
KHRD0868	160.5	170.5	10	79.62	796.20
KHRD0870	147.45	157	9.55	2.04	19.48
KHRD0870	187	190.27	3.27	4.73	15.47
KHRD0875	52	59	7	1.82	12.74
KHRD0876	26.83	41	14.17	3.06	43.36
KHRD0877	31	40	9	2.17	19.53
KHRD0877	47	56.76	9.76	4.45	43.43
KHRD0878	48.51	52.15	3.64	10.36	37.71
KHRD0880	1	36.5	35.5	0.47	16.69
KHRD0880	45.5	55	9.5	1.41	13.40
KHRD0881	33.15	57.7	24.55	2.01	49.35
KHRD0882	14	51.8	37.8	1.64	61.99
KHRD0882	53.5	72	18.5	1.44	26.64
KHRD0883	12.4	23	10.6	1.55	16.43
KHRD0883	28	32.53	4.53	13.38	60.61
KHRD0889	109.61	120.45	10.84	3.22	34.90
KHRD0889	255.85	274	18.15	1.75	31.76
KHRD0890	26	35.04	9.04	2.62	23.68
KHRD0890	40.84	45	4.16	4.82	20.05
KHRD0890	121.82	126.34	4.52	4.86	21.97
KHRD0890	168.83	170.9	2.07	14.37	29.75
KHRD0891	57.85	60.31	2.46	15.11	37.17
KHRD0891	166.29	166.63	0.34	36.32	12.35
KHRD0891	233.48	248.55	15.07	2.71	40.84
KHRD0894	59	76.47	17.47	0.82	14.33
KHRD0894	145	156.23	11.23	4.80	53.90

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0894	225.7	226.88	1.18	29.30	34.57
KHRD0894	261	295.1	34.1	0.41	13.98
KHRD0899	22.92	46	23.08	3.03	69.93
KHRD0899	100	111	11	2.19	24.09
KHRD0899	149	159.35	10.35	12.10	125.24
KHRD0899	281.9	365	83.1	1.23	102.21
KHRD0905	73.32	102	28.68	1.02	29.25
KHRD0905	114.7	123.4	8.7	1.77	15.40
KHRD0905	138	167.52	29.52	1.40	41.33
KHRD0905	175.6	209	33.4	1.76	58.78
KHRD0905	282	288	6	5.26	31.56
KHRD0905	293.8	397.65	103.85	1.58	164.08
KHRD0907	1	21.52	20.52	0.89	18.26
KHRD0907	36.7	56.05	19.35	2.16	41.80
KHRD0907	138.8	142.51	3.71	8.11	30.09
KHRD0907	155	182.58	27.58	0.73	20.13
KHRD0907	265.64	271.9	6.26	3.29	20.60
KHRD0908	140.6	146.8	6.2	3.16	19.59
KHRD0908	185.55	194.2	8.65	8.79	76.03
KHRD0908	274	313.83	39.83	0.43	17.13
KHRD0908	318	324.5	6.5	3.37	21.91
KHRD0908	335.5	350	14.5	3.49	50.61
KHRD0908	355	381.96	26.96	1.99	53.65
KHRD0909	111	112.8	1.8	53.02	95.44
KHRD0909	178	190	12	1.58	18.96
KHRD0909	309	322	13	4.16	54.08
KHRD0911	108.31	123.85	15.54	0.80	12.43
KHRD0911	128	160	32	8.24	263.68
KHRD0911	171	206	35	0.68	23.80
KHRD0911	247.78	252.39	4.61	5.66	26.09
KHRD0911	294	298	4	3.09	12.36
KHRD0911	347.4	357	9.6	13.70	131.52
KHRD0913	2.93	31.37	28.44	0.45	12.80
KHRD0913	36.91	38.3	1.39	12.56	17.46
KHRD0913	142	143.74	1.74	16.46	28.64
KHRD0915	241.8	264	22.2	0.61	13.54
KHRD0915	325	353	28	0.71	19.88
KHRD0917	15.45	34.3	18.85	1.22	23.00
KHRD0917	39.7	43.7	4	4 12	16.48
KHRD0917	48	53 15	5 15	4 70	24.10
KHRD0917	277 5	287	95	1 74	16 53
KHRD0918	25.35	37	11.65	1.65	19.22
KHRD0918	49	55	6	3.93	23.58
KHRD0918	320 52	333.26	12 74	1 72	21.91
KHRD0920	2.35	12	9,65	1.82	17.56
KHRD0920	18 5	40	21 5	0.96	20.64
KHRD0920	45	63 17	18 17	1 09	19 81
KHRD0920	76	84.85	8 85	8 21	72.66
KHRD0924	6 34	35.85	29 51	5 11	150.80
KHRD0925	<u> </u>	<u> </u>	36.6	2 93	107.24
KHRD0928	4	41	37	1.39	51,43
111120320		71	57	1.55	51.75

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0929	7	19	12	1.88	22.56
KHRD0929	23.99	30.65	6.66	16.30	108.56
KHRD0930	4	10.75	6.75	5.23	35.30
KHRD0930	24.6	33	8.4	3.77	31.67
KHRD0931	68.88	78	9.12	1.36	12.40
KHRD0931	104.7	111	6.3	5.31	33.45
KHRD0932	66	82.4	16.4	10.62	174.17
KHRD0933	85	95.6	10.6	5.60	59.36
KHRD0933	134.3	139.35	5.05	3.42	17.27
KHRD0933	158.3	170.1	11.8	1.71	20.18
KHRD0933	176.7	193.5	16.8	0.78	13.10
KHRD0934	75.55	99.2	23.65	0.88	20.81
KHRD0935	19.41	29	9.59	1.43	13.71
KHRD0945	12.5	14.1	1.6	9.97	15.95
KHRD0945	45	73	28	0.87	24.36
KHRD0945	81	106	25	1.51	37.75
KHRD0945	112	126	14	3.69	51.66
KHRD0946	59.65	135	75.35	1.83	137.89
KHRD0947	51.9	67.8	15.9	2.64	41.98
KHRD0947	101.35	117.84	16.49	16.50	272.09
KHRD0948	37.5	74.6	37.1	0.61	22.63
KHRD0948	79	95.61	16.61	0.98	16.28
KHRD0948	106.7	109	2.3	29.93	68.84
KHRD0948	115	134.9	19.9	2.32	46.17
KHRD0949	111	117.1	6.1	3.29	20.07
KHRD0950	52	77	25	0.87	21.75
KHRD0950	83.2	91	7.8	2.79	21.76
KHRD0951	3	49.05	46.05	0.59	27.17
KHRD0957	1	7.86	6.86	4.52	31.01
KHRD0957	74.2	90.2	16	2.05	32.80
KHRD0958	59	78.81	19.81	1.40	27.73
KHRD0958	83.47	90	6.53	2.60	16.98
KHRD0959	38	42	4	4.28	17.12
KHRD0960	77.42	95	17.58	1.12	19.69
KHRD0961	52.3	87.25	34.95	1.64	57.32
KHRD0963	0	3	3	8.10	24.30
KHRD0963	67.8	69.4	1.6	8.71	13.94
KHRD0964	54.5	93	38.5	1.16	44.66
KHRD0965	68.3	82 49	14 19	1 26	17.88
KHRD0967	118.2	128 85	10.65	1 22	12.99
KHRD0968	32	45	13	1 72	22.35
KHRD0968	77	93	16	1 42	22.30
KHRD0969	83.02	86.5	3 48	4 31	15.00
KHRD0969	87	93 35	6 35	8 74	55 50
KHRD0970	66	98	32	0.82	26.24
KHRD0971	75	104 4	29.4	0.62	19 99
KHRD0973	89 7	117	23.7	1 21	29.21
KHRD0973	125	136	11	2.22	25.21
KHRD0074	69 1/	71 5/	2 /	5 80	12.00
KHRD0974	87	111	2.7	1 77	<u> </u>
KHRD0976	97	115.4	18.4	0.90	16.56
KIII.20370		110.7	10.7	0.50	10.00

Drill hole ID	From	То	Length	Gold (g/t)	gram/meter
KHRD0977	103	123	20	1.94	38.80
KHRD0978	5	31.5	26.5	0.49	12.99
KHRD0979	98	104.78	6.78	4.16	28.20
KHRD0981	57	83	26	0.63	16.38
KHRD0982	53.6	80.8	27.2	0.62	16.86
KHRD0982	85	96.54	11.54	1.81	20.89
KHRD0983	105	130.45	25.45	1.23	31.30
KHRD0984	56	88.1	32.1	0.46	14.77
KHRD0985	59.48	76.44	16.96	0.86	14.59
KHRD0987	102.73	128.2	25.47	0.48	12.23
KHRD0991	100	126.8	26.8	0.45	12.06
KHRD0993	115.2	134	18.8	0.65	12.22
KHRD0995	17.7	25	7.3	2.27	16.57
KHRD0995	48	54.5	6.5	3.36	21.84
KHRD0996	84.51	95.58	11.07	1.15	12.73
KHRD0999	59.97	64	4.03	10.87	43.81
KHRD0999	137.74	150.9	13.16	1.35	17.77
KHRD1005	99.62	100.22	0.6	214.90	128.94
KHRD1006	89.14	89.61	0.47	37.07	17.42
KHRD1009	13.67	14.07	0.4	47.26	18.90
KHRD1009	41.24	85.63	44.39	0.78	34.62
KHRD1010	103	107.32	4.32	24.73	106.83

Reporting parameters:

- 1. 0.3g/t Au low cut.
- 2. No high cut applied.
- 3. Max 4m consecutive intervals of sub-grade (<0.3 g/t Au) material included.
- 4. Minimum reporting length of 6 metres and grade of 1.2 g/t Au, or minimum contained gold >12 gram*metres accumulation.
- 5. Figures quoted are based down hole calculations.
- 6. Collar coordinates, elevation and orientation given in the KOTH Mine Grid.
- 7. Note discrepancies between announcements for significant calculations of previously quoted results may occur due to different reporting parameters and nature of calculation.

JORC TABLE 1's Sections 1 to 3 for

KOTH Open Pit & Underground and REGIONAL RESOURCES

KOTH Resource Areas	Refer to Table 1 in ASX Announcements:
KOTH OP Measured Resource	See below
KOTH OP Mineral Resource within Pit Design	See below
KOTH OP & UG Mineral Resource below Pit	See below
Design	
Rainbow	Near-mine regional resources at King of the
	Hills – 1 st May 2019
Severn	Near-mine regional resources at King of the
	Hills – 1 st May 2019
Centauri	Additional Resources defined for satellite
	open pit deposits at King of the Hills – 6 th May
	2020
Cerebus – Eclipse	Additional Resources defined for satellite
	open pit deposits at King of the Hills – 6 th May
	2020

JORC CODE, 2012 EDITION – TABLE 1 REPORT: KOTH GOLD MINE –King of the Hills Resource 30 June 2023 model update (used for below the Pit design area of model.)

Section 1: Sampling	Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary		
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry	• Sampling activities conducted at King of the Hills by Red5 included underground diamond core drilling (DD), reverse circulation (RC) and underground face chip sampling.		
	standard measurement tools appropriate to the minerals under investigation, such as down hole	• Sampling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drilling (DD) and face chip sampling.		
	These examples should not be taken as limiting the broad meaning of sampling.	 All sampling of diamond drill core (DD) from recent drilling by Red5 was carried out by halving the drill core lengthwise, using a powered diamond saw, and submitting predetermined lengths of half core for analysis. 		
		• Drilling completed by Red5 from November 2020 to June 2023, was sampled in accordance with the Company's standard sampling protocols, which are considered to be appropriate and of industry standard.		
		 Historical sampling of KUD, KHEX, KHGC, KSD, TADD and TARD series of diamond drill holes (DD), the nature and quality of which is considered to be done using Industry Standard practices and standard sampling protocols. 		
		• Sampling of historical drill core and core from recent drilling by Red5 was carried out in accordance with the Company's standard sampling protocols, which are considered to be appropriate and of industry standard.		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	 Red 5 are satisfied that the historical and recent sampling of drill core, drill samples and face samples was carried out as per industry standard, and similar to, or in accordance with Red 5 sampling and QAQC procedures. 		
		• Red 5 inserted certified blank material into the sampling sequence immediately after samples that had been identified as potentially containing coarse gold. Barren flushes were also carried out during the sample preparation process, immediately after preparation of the suspected coarse gold bearing samples. The barren flush is also analysed for gold to identify and quantify any gold smearing in the sample preparation process.		
		• Certified Reference Material was regularly inserted into the sampling sequence after every 20 samples to monitor QAQC of the analytical process.		
		 All historic samples pre-August 2021 are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 50 g sub-sample for analysis by Fire Assay fusion / AAS determination techniques. 		
		Historically, core samples were taken on a 40g sub sample for analysis by FA/AAS.		
		• RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (1984- 2017).		

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
		 All Red 5 samples post August 2021 are dried, crushed to nominal 2-3mm then split to produce a 500g sample for analysis by Photon Analysis for gold by MinAnalytical at their Kalgoorlie laboratory.
		 Samples for multielement are pulverise to 75µm from the gold sample course rejects. The pulp is then digested using either a 3 or the 4 acid digest for analysed using Inductively coupled plasma mass spectrometry (ICP-MS).
		 Note MinAnalytical was purchased by ALS in December 2021.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required,	• All underground samples post August 2021 have been whole core sampled which are dried, crushed to nominal 2-3mm then split to produce a 500g sample for analysis by Photon Analysis for gold.
		 Pre-August 2021 Red 5 drill core sampling has been half cut and sampled downhole to a minimum of 0.2m and a maximum of 1.2m to provide a sample size between 0.3-5.4 kg, which is crushed and pulverised to produce a 50g charge for fire assay. The remaining half of the core is stored in the core farm for reference. For dedicated grade control samples whole core sampling was conducted.
	sach as where there is coarse gold that has innerent sampling problems.	• Coarse gold is only occasionally observed in drill core. Coarse gold is rarely seen in RC drill fines.
	Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of	 All historic RAB, RC, AC and DD and sampling is assumed to have been carried out to industry standard at that time.
	detailed information	 The majority of the recent historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis via fire assay and atomic absorption spectroscopy.
		 Historical analysis methods include fire assay, aqua regia and unknown methods.
		 All RC samples obtained by Red 5 from drill cuttings where split using the Rotary splitter attached to the drill rig and collected into numbered calico bags weighing between 2 – 3 kg.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.)	 Drilling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), air core (AC), and diamond drilling (DD).
	and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Historical and current surface and underground diamond core drilling are carried out by drilling contractors, using standard wireline techniques. Standard double tube is used since the core is considered to be sufficiently competent to not require the use of triple tube. Diamond drill core diameter is NQ2 (Ø 50.5mm).
		 Current underground diamond drill core is orientated. Diamond core is pieced together in an angle iron cradle to form a consecutive string of core, where enough consecutive orientation marks that align an orientation line is marked on the core.
		 Current RC techniques for surface are based on Schramm drill rig fitted with a 5 ¼" diameter face- sampling RC bit.
		 For Open Pit grade control drilling is conducted using a track mounted Atlas Copco ROC L8 drill rig fitted with a 4 ½ diameter face-sampling RC bit. Note the Open Pit RCGC samples where not used in the estimation for this release.

Section 1: Sampling	Techniques and Data	
Criteria	JORC Code Explanation	Commentary
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	 Drill core sample recovery is calculated for each core run, by measuring and recording length of core retrieved divided by measured length of the core run drilled. Sample recoveries are calculated and recorded in the database.
		• Core recovery factors for core drilling are generally very high typically in excess of 95% recovery.
		• It has been noted that recoveries for historic diamond drilling were rarely less than 100% although recovery data has not been provided. Minor core loss was most likely due to drilling conditions and not ground conditions.
		Rock chip samples, taken by the geologist underground, do not have sample recovery issues.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	 Drill core recovery, and representativeness, is maximised by the driller continually adjusting rotation speed and torques, and mud mixes to suit the ground being drilled.
		• Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on the core blocks.
		• UG faces are sampled left to right/bottom to top across the face allowing a representative sample to be taken.
		• It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	There is no known relationship between sample recovery and grade.
		• Diamond drilling has high recoveries, due to the competent nature of the ground, therefore loss of material is minimised. There is no apparent sample bias.
		Any historical relationship is not known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• 100% of drill core is logged geologically and geotechnically to a level of detail sufficient to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
		 Logging of diamond drill core has recorded lithology, mineralogy, texture, mineralisation, weathering, alteration and veining. Logging is qualitative and/or quantitative where appropriate.
		• There are no known core photographs available for historical KUD, KHEX, KHGC, KSD, TADD and TARD series of drill core.
		Core photographs are taken for all drill core drilled by Red5.
		Underground faces are photographed and mapped.
		 Qualitative and quantitative logging of historic data varies in its completeness.
		 Some historical diamond drilling has been geotechnically logged to provide data for geotechnical studies.
		Some historic diamond core photography has been preserved.
	The total length and percentage of the relevant intersections logged	All diamond drill holes are logged in their entirety and underground faces are mapped.

Section 1: Sampling T	echniques and Data	
Criteria	JORC Code Explanation	Commentary
		Historic logging varies in its completeness.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 All diamond drill core samples were obtained by cutting the core in half, along the entire length of each sampling interval. Half core samples are collected over predetermined sampling intervals, from the same side, and submitted for analysis.
		• Drill core sample lengths can be variable in a mineralized zone, though usually no larger than 1.2 meters. Minimum sampling width is 0.2 metres. This enables the capture of assay data for narrow structures and localized grade variations.
		• Drill core samples are taken according to a cut sheet compiled by the Geologist. Core samples are bagged in pre-numbered calico bags and submitted with a sample submission form.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Various sampling methods for historic RAB, AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split.
		Underground face samples are chip sampled from the wall using a hammer
		It is unknown if wet sampling was carried out previously.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 The sample preparation of diamond drill core and face samples adheres to industry standard practice. It is conducted by a commercial certified laboratory and involves oven drying at 105°C, jaw crushing then total grinding using an LM5 to a grind size of 90% passing 75 microns. This procedure is industry standard and considered appropriate for the analysis of gold for Archaean lode gold systems.
		Best practice is assumed at the time of historic sampling
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	All sub-sampling activities are carried out by commercial certified laboratory and are considered to be appropriate.
		• Industry standard practice is assumed at the time of historic RAB, RC, AC and DD sampling.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Some duplicate sampling was performed on historic RAB, RC, AC and DD drilling.
		No duplicates have been taken of UG diamond core.
		Field duplicates are taken routinely underground when sampling the ore structures.
		 For diamond drill core the remaining half core, portion not sampled, is retained in core trays for future reference. There is sufficient drilling data and underground mapping and sampling data to satisfy Red 5 that the sampling is representative of the in-situ material collected
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of drilling data and mine production data supports the appropriateness of sample sizes.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Pre-August 2021 Primary assaying for gold for DD and Face samples is by fire assay fusion with AAS finish to determine gold content. This method is considered one of the most suitable for determining gold concentrations in rock and is a total digest method.
		• Screen fire assays are carried out for all assays returning a grade >100g/t for drilling conducted by Red 5. In general, the screen fire assays are higher than normal fire assay. The procedure

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
		involves passing the sample through a Tyler 200 mesh stainless steel screen. The +75 micron material is fire assayed to extinction. Two samples are taken from the -75 micron and fire assayed. In both instances an AAS finish is used. A weighted grade average is produced. The procedure is referenced as Au-SCR22.	
		• Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods. Umpire analysis were undertaken at Independent Assay Laboratories (IAL) for selected samples comprising a 100-sample batch. Results show a reasonable correlation with the original samples, with differences largely attributed to nugget effect.	
		 Historic work by Mount Edon Mines (2000, AusIMM 4th International Mining Geology Conference) showed an undervaluation of 8% for fire assaying when compared to Leachwell using a 200g pulp and a 2 hour leach. 	
		 Post August 2021 all gold assays for both DD and RC have been done using the Photon Anayliser technique. 	
		The quality of the assays is within industry standards.	
		All the recent and historical assay results for gold are considered total.	
		Acceptable levels of accuracy and precision were established prior to accepting the sample data.	
		 The QAQC procedures and results show acceptable levels of accuracy and precision were established. 	
		 MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. 	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised to determine assay results at the King of the Hills project	
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process.	
		• Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory.	
		• Certified blank material is inserted under the control of the geologist and are inserted at a minimum of one per batch. Barren quartz flushes are inserted between expected mineralised sample interval(s) when pulverising.	

Section 1: Sampling Techniques and Data					
Criteria	JORC Code Explanation	Commentary			
		 QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. 			
		 QAQC data validation is routinely completed and demonstrates sufficient levels of accuracy and precision. 			
		 Pre-August 2021 sample preparation checks for fineness are carried out to ensure a grind size of 90% passing 75 microns. 			
		• Post-August 2021 assays are course crushed to nominal 2-3mm and stored in 500g jars. These are check by the laboratory before analysing.			
		• The laboratory performs several internal processes including standards, blanks, repeats and checks.			
		Industry standard practice is assumed for previous holders.			
		Some historic QAQC data is stored in the database but not reviewed.			
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 Core samples with significant intersections are typically reviewed by Senior Geological personnel to confirm the results. 			
	The use of twinned holes.	 No specific twinned holes were drilled, however due to the drilling density several intersections are often in close proximity. 			
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	 Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. 			
		 All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration and structural characteristics of core) is captured directly by customised digital logging tools with stringent validation and data entry constraints. Geologists load data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. 			
		 Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server. 			
	Discuss any adjustment to assay data.	The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data.			
		 No adjustments have been made to assay data. First gold assay is utilised for grade review. Re- assays carried out due to failed QAQC will replace original results, though both are stored in the database. 			
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches,	 Diamond drill hole collars are marked out pre-drilling and picked up by company surveyors using a total station at the completion of drilling, with an expected accuracy of +/-2mm. 			

Section 1: Sampling Techniques and Data							
Criteria	JORC Code Explanation	Commentary					
	Resource estimation.	 Underground faces are located using a Leica D5 disto with and accuracy of +/- 1mm from a known survey point. 					
		• Downhole surveys are carried out at regular intervals using a single shot camera, initially at 15m and then 30m thereafter. A final downhole survey is completed using an electronic downhole survey tool (Deviflex Rapid), both in and out runs are recorded.					
		 Historic drilling was located using mine surveyors and standard survey equipment; more recent surface drilling has been surveyed using a DGPS system. 					
		• The majority of downhole surveys for historic RAB, RC, AC and DD drilling are estimates only. More recent (post 1990) drilling has been surveyed with downhole survey tools at regular intervals including DEMS, gyroscope and camera.					
		 Underground voids are surveyed by mine surveyors. The survey control on these voids is considered adequate to support the drill and mine planning. 					
	Specification of the grid system used.	 A local grid system (King of the Hills) is used. A two point transformation to MGA_GDA94 zone 51 is tabulated below: 					
		KOTHEast KOTHNorth RL MGAEast MGANorth RL Point 1 49823.541 9992.582 0 320153.794 6826726.962 0 Point 2 50740.947 10246.724 0 320868.033 6827356.243 0					
		Mine Grid elevation data is +4897.27m relative to Australian Height Datum					
		Historic data is converted to King of the Hills local grid on export from the database.					
	Quality and adequacy of topographic control.	 DGPS survey has been used to establish a topographic surface and aerial/drone survey. Open pit drone survey is done on regular bases. 					
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The nominal drill spacing is variable ranging from less than 20m x 20m with some areas of the deposit at 80m x 80m or greater. This spacing includes data that has been verified from previous exploration activities on the project. Note underground grade control drilling can be down to nominal 15m x 15m.					
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource	 Underground level development is 15-25 meters between levels and face sampling is <1m to 10m spacing. This close spaced production data provides insights into the geological and grade continuity and forms the basis of exploration drill spacing. 					
	and Ore Reserve estimation procedure(s) and classifications applied.	• The Competent Person considers the data reported to be sufficient to establish the degree of geological and grade continuity appropriate for future Mineral Resource classification categories adopted for KOTH.					
Orientation of data in relation to geological	Whether sample compositing has been applied.	 Diamond drill core and faces are sampled to geological intervals; compositing is not applied until the estimation stage. 					
structure		Reverse circulation drilling are sampled to 1m composite lengths.					
		• Samples were composited in the estimation stage to two fundamental lengths; 1m and 2m.					

Section 1: Sampling Techniques and Data Criteria **JORC Code Explanation** Commentary • The 1m composite length has been used in the evaluation of the High Grade Vein (HGV) domains and the 2m composite length has been used to evaluate the bulk domains. Some historic RAB and AC drilling was sampled with 3-4m composite samples. Anomalous zones were resampled at 1m intervals in some cases; it is unknown at what threshold this occurred. Whether the orientation of sampling achieves Sampling of the (HGV) domains has been conducted in most cases perpendicular to the lode unbiased sampling of possible structures and the orientations where the mineralisation controls are well understood. The space between the HGV extent to which this is known, considering the deposit consists of stockwork mineralisation (bulk domain) where the predominant mineralisation trend is orthogonal to the current drilling orientation. It is possible, where mineralisation controls are not type. well understood and the interpretation of the stockwork mineralisation aligns with drilling, mineralisation in this deposit has not been optimally intersected. Majority of the Open Pit drilling is oriented sub perpendicular to the mineralisation. ٠ If the relationship between the drilling orientation Drilling is designed to intersect ore structures as close to orthogonal as practicable. This is not ٠ and the orientation of key mineralised structures is always achievable from underground development. considered to have introduced a sampling bias, this Cursory reconciliations carried out during mining operations have not identified any apparent • should be assessed and reported if material. sample bias having been introduced because of the relationship between the orientation of the drilling and that of the higher-grade mineralised structures. There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures. Sample security The measures taken to ensure sample security. Recent samples are prepared on site under supervision of geological staff. Samples are selected, ٠ bagged into tied numbered calico bags then grouped into larger secured bags and delivered to the laboratory by a transport company. All recent KOTH samples manage by Red 5 Limited are submitted to an independent certified laboratory's in Kalgoorlie for analysis. KOTH is a remote site and the number of external visitors is minimal. The deposit is known to • contain visible gold, and while this renders the core susceptible to theft, the risk of sample tampering is considered very low due to the policing by Company personnel at all stages from drilling through to storage at the core yard, sampling and delivery to the laboratory Historical samples are assumed to have been under the security of the respective tenement holders ٠ until delivered to the laboratory where samples would be expected to have been under restricted access. Audits or reviews The results of any audits or reviews of sampling A series of written standard procedures exists for sampling and core cutting at KOTH. Periodic techniques and data. routine visits to drill rigs and the core farm are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse findings, and any minor deficiencies were noted, and staff notified, with remedial training if required. No external audits or reviews have been conducted for the purposes of this report. •

Section 1: Sampling Techniques and Data					
Criteria	riteria JORC Code Explanation Commentary				
		Previous resource estimations for the KOTH resource have been independently reviewed by third parties.			

Section 2: Reporting of Exploration Results					
Criteria	JORC Code Explanation	Commentary			
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park	 The King of the Hill pit and near mine exploration are located on M37/67, M37/76, M37/90, M37/201 and M37/248 which expire between 2028 and 2031. All mining leases have a 21 year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited. 			
	and environmental settings.	• The mining leases are subject to a 1.5% 'IRC' royalty, now owned by Royal Gold Inc.			
		• All production is subject to a Western Australian state government 'NSR' royalty of 2.5%.			
		 All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF. 			
		• There are currently no native title claims applied for, or determined, over the mining leases.			
		 An 'Other Heritage Place' (aboriginal heritage place ID: 1741), referred to as the "Lake Raeside/Sullivan Creek" site, is located within M37/90. 			
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and the licence to operate already exists. There are no known impediments to obtaining additional licences to operate in the area.			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The King of the Hills prospect was mined sporadically from 1898-1918. Modern exploration in the Leonora area was triggered by the discovery of the Habour Lights and Tower Hill prospects in the early 1980s, with regional mapping indicating the King of the Hills prospect area was worthy of further investigation.			
		 Various companies (Esso, Ananconda, BP Minerals. Kulim) carried out sampling, mapping and drilling activities delineating gold mineralisation. Kulim mined two small open pits in JV with Sons of Gwalia during 1986 and 1987. Arboynne took over Kulim's interest and outlined a new resource while Mount Edon carried out exploration on the surrounding tenements. Mining commenced but problems lead to Mount Edon Mines acquiring the whole project area from Kulim, leading to the integration of the King of the Hills, KOTH West and KOTH Extended into the Tarmoola Project. Pacmin bought out Mount Edon and were subsequently taken over by Sons of Gwalia. St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the 			
		name given to the underground mine, which St Barbara developed beneath the Tarmoola pit. St			

Section 2: Reporting of Exploration Results					
Criteria	JORC Code Explanation	Commentary			
		Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine.			
		 In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen Mineral Holdings Limited. 			
Geology	Deposit type, geological setting and style of mineralisation.	• The KOTH mineralisation is considered to be part of an Archean Orogenic gold deposit with many similar characteristics to other gold deposits within the Eastern Goldfields of the Yilgarn Craton.			
		 Gold mineralisation is associated with sheeted and stockwork quartz vein sets within a hosting granodiorite stock and pervasively carbonate altered ultramafic rocks. Mineralisation is thought to have occurred within a brittle/ductile shear zone with the main thrust shear zone forming the primary conduit for the mineralising fluids. Pre-existing quartz veining and brittle fracturing of the granite created a network of second order conduits for mineralising fluids. 			
		• Brittle fracturing along the granodiorite contact generated radial tension veins, perpendicular to the orientation of the granodiorite, and zones of quartz stockwork. These stockwork zones are seen in both the granodiorite and ultramafic units and contain mineralisation outside the modelled continuous vein system (High Grade Veins).			
		Gold appears as free particles (coarse gold) or associated with traces of base metals sulphides (galena, chalcopyrite, pyrite) intergrown within quartz along late stage fractures.			
Drillhole information	A summary of all information material to the understanding of the exploration results including a	• Drillhole collar locations, azimuth and drill hole dip and significant assays are reported in Appendix 1 attached to the ASX announcement for which this Table 1 Report accompanies.			
	tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Future drill hole data will be periodically released or when a result materially changes the economic value of the project.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Reporting of significant intercepts are based on weighted average gold grades, using a low cut-off grade of 0.3g/t Au. No cutting of high grades has been applied to the significant intercept reported. 			

Section 2: Reporting of Exploration Results					
Criteria	JORC Code Explanation Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Commentary Compositing of intercepts is constrained by including consecutive down-hole lengths of maximum 4 metres at grades <0.3g/ Au. Minimum reporting length of 6m and grade >1.2g/t or a minimum contained gold >12 gram*meter accumulation has been used. Note due to the type of mineralization high grade values are common over narrow intervals. No metal equivalents are used. 			
Relationship between mineralisation widths and intercept lengths Diagrams	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 No true thickness calculations have been made. All reported down hole intersections are documented as down hole width only. True width not known. The KOTH mineralisation envelope is intersected approximately orthogonal to the orientation of the mineralised zone, or sub-parallel to the contact between the granodiorite and ultramafic. Due to underground access limitations and the variability of orientation of the quartz veins and quartz vein stock-works, drilling orientation is not necessarily optimal. Long-section below shows underground drill holes included in resource model (KHRD Series drillholes) completed since the June 2022 Resource model. 			
		 Long-section below shows underground drill holes included in resource model completed since the June 2022 Resource model, with gold legend displayed. 			

Section 2: Reporting of Exploration Results					
Criteria	JORC Code Explanation	Commentary			
		 Long-section below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed as centroids (points) for HGV and IDD Domains with gold legend 			
		displayed			
		• Long-section below shows measured, indicated and interfed resource model at a cut-on grade of 0.4g/t Au. Model displayed a centroids (points) for Bulk Domains with gold legend displayed			

Section 2: Reporting of Exploration Results												
Criteria	JORC Code Explanation	Comn	nentary									
			5600 L									
			5400 L			Current	Tarmoola Pit					
			52001		1000		No.	-		2		
									sele.	(m)		
			5000 L	BLOCK: GOLD	<	* ,						
			4800 L	-000.000 <=							4	
			4600 L	1.500 <= <1.000 1.000 <= <10.000 6.000 <= <10.000 <10.000				- 🌮		- <u>- 1</u>		
			11001	10001-								
			<u>4400 L</u> Ш Ц	ц	ш ц	ш	ш ц	u u	ш	W	90	
			4200	4	49200	2000	50400	51200	51600	Bearing: 314	-90 00 00 00 00 00 00 00 00 00 00 00 00 0	
		•	Long-section	n below	shows Me	asured, Inc	licated and	d Inferre	d resour	rce model at	a cut-off grad	e of
			0.4g/t Au. I	Model d	isplayed a	centroids (points) for	HGV an	nd IDD D	omains with	Resource Cat	egory
				ayeu								
			5600 L									
			5400 L			e	urrent Tarmoola Pit					
			5200 L	S.		CALL ALLAN						
			.5000 L		<u>r vi g</u>	Color And States	A Contraction	V				
			1000	BLOCK : RESCAT × BLOCK : RESCAT × BLOCK : RESCAT BLOOK : RESCAT CLOOK : RESCAT × BLOOK : RESCAT × BLOOK : RESCAT ×								
			4800 L	2.000 += + 1.000 1.000 += + 4.000 4.000 += + 5.000 1.000 == + 5.000								
			4600 L	6.000								
			4400 L							N 90		
			ш ш	Ш	E E	ш	ш Ц 00	Ш	Ш			
			4200 P4 00 00 44 44	492	496	200	508 508	512	516	Bearing: 314 Dip:-0		

Section 2: Repo	orting of Exploration Results	
Criteria	JORC Code Explanation	 Commentary Long section below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for Bulk Domains with Resource Category legen displayed
		5600 L
		5400 L Curret Tampade Rt -
		Plan below shows underground drill holes included in resource model (KHRD Series drillholes) completed since the June 2022 Resource model.
		11200 N
		10400 N
		10000 N
		4920 5000 5120 5200 5200 5200 5200 5200 52

Section 2: Reporting of Exploration Results				
Criteria	JORC Code Explanation	Commentary		
		Plan below shows underground drill holes included in resource model completed since the June 2022 Resource model, with gold legend displayed.		
		11200 N		
		49200 49500 49200 50400 6 50000 6 51200 6 6 7000		
		 Plan below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for HGV and IDD Domains with gold legend displayed 		

Criteria	JORC Code Explanation	Commentary
		 Plan below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed a centroids (points) for Bulk Domains with gold legend displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed a centroids (points) for Bulk Domains with gold legend displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed a centroids (points) for Bulk Domains with gold legend displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed a centroids (points) for Bulk Domains with gold legend displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade of 0.4g/t Au Model displayed Inferred resource model at a cut-off grade off displayed Inferred resource model at a cut-off grade off displayed Inferred resource model at a cut-off displayed Inferred resource model at a cut-off displayed Inferred resource model at

Section 2: Rep	orting of Exploration Results	
Criteria	JORC Code Explanation	Commentary
Criteria	JORC Code Explanation	 Plan below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for HGV and IDD Domains with Resource Category legend displayed
		 Plan below shows Measured, Indicated and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for Bulk Domains with Resource Category legend displayed

Section 2: Reporting of	f Exploration Results	
Criteria	JORC Code Explanation	Commentary 11600 N 11600 N 11600 N 11600 N 11000 N 1
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant resulted have been reported in Table 2. KoTH significant assays (relative to the intersection criteria) including those results where no significant intercept was recorded. Weighted average composited intervals have been tabulated and included within the main body of the ASX release for which this Table 1 Report accompanies.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other exploration data that may have been collected is considered material to this announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is continually reviewing the resource models and geology interpretations. Drilling is currently being planned to test the next one to two-year mine plan for underground, stope derisking for mine planning and resource extensions. No diagrams have been included in this report to show the proposed drilling plans for the KOTH resource.

Section 3: Estima	tion and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
Database Integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for	 The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture.
	Mineral Resource estimation purposes.	 Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules.
		The Database Administrator imports assay and survey data (downhole and collar) from raw csv files.
		Data from previous owners was taken to be correct and valid.
	Data validation procedures used.	 The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.
		 Validation of data included visual checks of hole traces, analytical and geological data.
Site Visits	<i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>	• The competent person is an employee of Red 5 and conducts regular site visits to the King of the Hill project. The Competent person has an appreciation of the King of the Hills deposit geology and the historical mining activities that occurred there.
Geological Interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed and validated the historical interpretation of the King of the Hills deposit. This knowledge is based on extensive geological logging of drill core, RC chips, detailed open pit mapping and assay data. Results of current mining have also been used. Mineralisation of HGV domains are defined by quartz veining, occurrence of sulphides (galena, chalcopyrite, and pyrite) and elevated gold grade (>0.5 g/t). Mineralisation of stockwork zones (bulk domains) are defined by stockwork quartz veining along the contact of the granodiorite/ultramafic and captures all drill intercepts in the deposit.
	Nature of the data used and any assumptions made.	• The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration.
		 Significant time has been spent by Red 5 geologists in recent times updating the wireframes for the HGV's in particular with there now being some 213 individual HGV's, 20 IDD's and 5 bulk domains, where 72 new HGV domains have been added based on additional information (drillhole and face data), the remaining 20 IDD domains within the deposit were not updated from the June 2021 Resource Model which includes 20 IDD domains from Saracens latest review completed in October 2017 and assumed correct.
		No domains were removed from the Resource.
		 Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built, and the HGVs are now almost entirely modelled in Leapfrog.
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	 Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.

Section 3: Estima	tion and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
	<i>The use of geology in guiding and controlling the Mineral Resource estimation.</i>	• The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.
	The factors affecting continuity both of grade and geology.	 The main factors affecting continuity are; Structurally offset quartz veining within the hosting granodiorite stock and the pervasively altered ultramafic rocks.
		 Proximity to the granodiorite as mineralisation extends into the altered ultramafic rocks.
		 Potassic alteration in the form of sericite is occasionally associated with mineralisation within the granite whilst fuchsite is often present in mineralised parts of the ultramafic rocks.
		 Orientation of tension vein arrays within the hosting granodiorite. These tension vein arrays within the central and southern portion of the mine may not necessarily be as continuous as modelled given the thickness of these veins, variability and fact most of these veins are modelled using RC data.
		 The existence of these tension veins has been validated by current underground development and recent drilling and assay of historical information.
		These factors were used to aid the construction of the mineralisation domains.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The northern section of the mineralised zone (also known as part of the Western Flank) strikes 30 degrees west of true north over a distance of 700m and plunges to the southwest. Individual lodes dip east at 35 to 45 degrees. Eastern Flank mineralisation strikes 30 degrees east of true north over a distance of 700m and is sub vertical. Stockwork mineralisation runs along the contact of the granodiorite/ultramafic contact and penetrates up to and over 100 to 200m inter the granodiorite. The average strike of the eastern edge of the granodiorite runs 30 degrees east of true north over a distance of 4km and is vertical.
		 In summary the KOTH mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is drilled down to a depth of approximately 590m and the southern half mineralisation has been drilled to approximately 250m below surface.
		 Mineralisation is still open down dip on the eastern contact and down plunge along the northern contact.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	 210 domains (including HGV, Bulk Domains, Intermediate Dolerite Dykes (IDD)) were estimated using ordinary kriging and 33 domains estimated using Inverse Distance to the power of 2 on 10mE x 10mN x 10mRL parent blocks size. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of search and variogram parameters for the resource model are as follows;

Criteria	IOBC Code Explanation	Commentary													
Cinterna		commentary								s	earch Ellipse				
			DOMAIN		Con Turne	Deseries	Diverse	Die	EP1	EP2	EP3	Min/Max	Min/Max	Min/Max	Max Samp per
			DOMAIN	DOW_CODE	Escrype	bearing	Flunge	Dip	(Maj,SM,MI)	(Maj,SM,MI)	(Maj,SM,MI)	Samp EP1	Samp EP2	Samp EP3	hole
			Transported	500	ID2	0	0	0	10x10x2.5	20x20x5	40x40x10	2,10	2,10	2,10	2
			Oxide	501	ID2 OK	165	0	-35	10x10x2.5	20x20x5	40x40x10 40x40x10	2,10	2,10	2,10	2
			BULK	998	OK	165	0	-35	10x10x2.5	20x20x5	40x40x10	2,10	2,10	2,10	2
			WASTE	999	ОК	165	0	-35	10x10x2.5	20x20x5	40x40x10	2,10	2,10	2,10	2
			BK_SD1U	997	OK	0	0	0	10×10×10	20x20x20	50x50x50	8,20	8,20	4,20	2
			BK_SD1G	994	OK	0	0	0	10x10x10 10x10x10	20x20x20	50x50x50	8,20	8,20	4,20	2
			BK SD2G	993	OK	0	0	0	10×10×10	20x20x20	50x50x50	8,20	8,20	4,20	2
			RIVERRUN	1	ОК	128	44	-76	2x2x1	30x30x10	60x60x20	1,2	3,6	2,6	1
			THEON	2	OK	128	44	-76	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			OSHA	3	OK	168	-28	-9	2x2x1	30x20x15	60x40x30	1,2	6,12	1,12	NA
			Shear 7	7	OK	177	-15	-4	2x2x1 2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			Baelor	8	ОК	78	10	-39	2x2x1	30x30x20	60x60x40	1,2	3,6	2,6	1
			Kaiser	9	OK	169	-15	-33	2x2x1	30x30x20	60x60x40	1,2	3,6	2,6	1
			Kaiser1	10	OK	357	16	24	2x2x1	30x30x20	60x60x40	1,2	3,6	2,6	1
			Kaiser2	11	OK	1699	-12	26	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	1 1
			REGAL	13	OK	79	59	17	2x2x1	30x30x30	60x60x60	1,2	3,6	1,6	1
			Imperial N	14	ОК	200	-17	-31	2x2x1	30x30x30	60x60x60	1,2	3,6	1,6	1
			Imperial N1	15	ОК	200	-17	-31	2x2x1	30x30x20	60x60x40	1,2	3,6	1,6	1
			Imperial N2	16	OK	335	2	20	2x2x1	30x30x20	60×60×40	1,2	6,12	1,12	NA
			Imperial N3	1/	OK	200	-17	-31	2x2x1 2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	2
			Kingdom U	19	OK	292	-13	30	2x2x1	30x30x20	60x60x40	1,2	3,6	1,6	1
			Kingdom_L	20	OK	5	-19	2	2x2x1	30x30x20	60x60x40	1,2	3,6	1,6	1
			Kingdom_L2	21	ОК	5	-19	2	2x2x1	30x30x20	60x60x40	1,2	6,12	1,12	NA
			Gilly	22	OK	310	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			ARRYN	24	OK	246	8	50	2x2x1	30x30x10	60x60x20	1,2	3.6	1,12	NA
				25	ОК	246	8	50	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				26	OK	246	8	50	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			On the last	27	OK	246	8	50	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	NA
			Catelyn	28	OK	327	-4	70	2x2x1 2x2x1	30x30x20 30x30x20	60x60x40	1,2	6,12	1,12	NA
				32	OK	329	-4	70	2x2x1	30x30x20	60x60x40	1,2	3,6	1,6	NA
				33	ОК	329	-4	70	2x2x1	30x30x20	60x60x40	1,2	3,6	1,6	NA
				34	ОК	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
				35	OK	329	-4	70	2x2x1 2x2x1	30x30x10 30x30x10	60x60x20	1,2	3,6	1,6	NA
				37	OK	314	-26	56	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				38	ОК	314	-26	56	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				39	OK	351	21	28	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				40	OK	351	21	28	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				43	OK	351	33	66	2x2x1 2x2x1	30x30x10	60x60x20	1,2	6.12	1,12	NA
				44	ОК	342	0	78	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
		1		45	ОК	272	28	49	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	1 (ep1), NA
				46	OK	342	0	78	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				4/	OK	329	-4	70	2x2x1 2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA NA
				50	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
		1		51	ОК	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				52	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
		-		53		313	-19	69 70	2x2x1 2x2x1	30x30x10	60x60x20	1,2	5,6	1,6	NA
				55	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA

	Criteria	IORC Code Explanation	Commentary													
	Ciricina	Some code Explanation	commentary		56	OK	342	0	78	2x2x1	30x30x10	60x60x20	12	3.6	16	1
					57	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				Robin	58	OK	313	-19	69	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
					60	ОК	9	54	73	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
Image Image <th< td=""><td></td><td></td><td></td><td></td><td>61</td><td>OK</td><td>25</td><td>25</td><td>78</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>3,10</td><td>1,10</td><td>NA</td></th<>					61	OK	25	25	78	2x2x1	30x30x10	60x60x20	1,2	3,10	1,10	NA
0 0 1 0 1 0 1 0 1 1 1 1 0					62	ОК	25	25	78	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
Horizon 100					63	OK	8	-12	38	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
No. 10 0. 0. 0. 0. 0. 0.00000 0.0000 0.00000<					64	OK	356	-60	80	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
var. vit vit <td></td> <td></td> <td></td> <td></td> <td>65</td> <td>OK</td> <td>351</td> <td>-14</td> <td>58</td> <td>2x2x1</td> <td>30x30x10</td> <td>60x60x20</td> <td>1,2</td> <td>3,5</td> <td>1,6</td> <td>NA</td>					65	OK	351	-14	58	2x2x1	30x30x10	60x60x20	1,2	3,5	1,6	NA
Prol. Prol. <th< td=""><td></td><td></td><td></td><td>Vara</td><td>73</td><td>OK</td><td>329</td><td>-14</td><td>70</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>6.12</td><td>1,12</td><td>NA</td></th<>				Vara	73	OK	329	-14	70	2x2x1	30x30x10	60x60x20	1,2	6.12	1,12	NA
1964. 9. 0. 9. 0. 10. 10.0 10.0 10.0 1970. 10. 0. 10.0 </td <td></td> <td></td> <td></td> <td>Bran U</td> <td>75</td> <td>OK</td> <td>246</td> <td>8</td> <td>50</td> <td>2x2x1</td> <td>30x30x10</td> <td>60x60x20</td> <td>1.2</td> <td>6.12</td> <td>1.12</td> <td>NA</td>				Bran U	75	OK	246	8	50	2x2x1	30x30x10	60x60x20	1.2	6.12	1.12	NA
100 10 00 10 00 10 00 10 00 <t< td=""><td></td><td></td><td></td><td>EF01A</td><td>76</td><td>ОК</td><td>39</td><td>42</td><td>39</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>6,10</td><td>1,10</td><td>NA</td></t<>				EF01A	76	ОК	39	42	39	2x2x1	30x30x10	60x60x20	1,2	6,10	1,10	NA
PPO R1 O R3 S4 A4 Jack Binding Genome L3 L1 L1 FOR R1 C R3 S4 R4 Jack L3 L3 <tdl3< td=""> L3 <tdl3< td=""></tdl3<></tdl3<>				EF01B	78	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
PB B1 Cor B2 Cor B2 Cor L3 L4 L4 M. PGA B2 Cor B3 Cor Cor Cor B3 Cor				EF02	81	OK	53	56	44	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
HOME BA CO DO DO DO DO DO<				EF03	82	OK	25	25	78	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
Pice 44 90 51 44 90 100 60.000 100 60.000 11.0 6.00 11.0 6.00 Imper 90 00 75 8 100 100.000 60.0000 11.0 6.00 11.0 6.00 Imper 90 00 75 8 100 100.000 60.0000 11.0 6.00 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0				EF05	83	OK	356	-60	80	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Prove B Sol B Sol B Sol B Sol B Sol B Sol B B Sol B< B< B B				EF06A	84	OK	53	56	44	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Bit Store Bit Column Description Description <thdescription< th=""> Description <thdescriptio< td=""><td></td><td></td><td></td><td>EF08</td><td>87</td><td>OK</td><td>313</td><td>-19</td><td>69</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>6,12</td><td>1,12</td><td>NA</td></thdescriptio<></thdescription<>				EF08	87	OK	313	-19	69	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
URL SK UK V1 4 UR SK UK UK<				Emperor	89	OK	4	6	22	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
0%0 % CK 17 -6 10 20:01 20:00:0 12.0 6.12 1.12 MA Hemosoid 100 CK 288 -3 18 20:01 80:00:0 60:00:0 1.2 6.12 1.13 MA Hemosoid 100 CK 288 -3 18 20:01 80:00:0 60:00:0 1.2 6.12 1.13 MA Hemosoid 100 CK 288 -3 18 20:01 80:00:0 60:00:0 1.2 6.12 1.13 MA Ford 114 CK 59 56 44 20:01 80:00:0 60:00:0 1.2 6.12 1.13 MA Rot 118 CK 18 4 9 20:01 80:00:0 60:00:0 1.2 6.12 1.13 MA Bard 122 CK 128 41 33 20:01 80:00:0 5.2 4.13 MA <				GR02	95	OK	17		10	2x2x1	20x20x10	60x60x20	1,2	6,12	1,12	NA
Invessa 100 6K 200 -30 13 2-02-1 2-00-101 6-06-202 1.2 6.12 1.12 1.12 1.12 Unifesting 103 0.K 316 -3 61 2-02-1 30-00-10 6-06-202 1.2 6.12 1.12 6.12 1.12 6.12 1.12 6.12 1.12 6.14 1.14 1.4<				GR02	96	OK	17	-6	10	2x2x1	30x30x10	60x60x20	1,2	6.12	1,12	NA
Lemmands Dig2 OK 255 45 85 2-24 393-30-10 656-30-10 1,2 6,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,13 1,12 1,13				Ironoaks	100	OK	203	-33	13	2x2x1	30x30x10	60x60x20	1.2	6.12	1.12	NA
Unificative 103 0x 316 412 51 30-30-30 6466-30 1.2 6.12 1.12 MA Rinder,L 118 0x 33 16 30-30-10 6666-30 1.2 6.12 1.2 MA Rinder,L 118 0x 13 86 4 20-30-10 6660-30 1.2 8.0 1.0 1.11 Rinder,L 118 0x 13 6. 4 70 22-30 0.00 1.2 6.12 1.12 MA Baras 120 0x 312 0x 132 0x 132 0x 1.2 6.12 1.2 6.12 1.2 1.2 MA Baras 121 0x 142 0x 142 0x 142 0x 12 6.12 1.2 6.12 1.2 1.12 MA Baras 122 0x 142 0x 132 0x 132 0x 132<				Lemonwood	102	ОК	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	3,12	2
Longitter 104 OK 284 31 31 30.30.10 606.00 1.2 6.12 1.12 MA Royal 118 OK 58 44 20:1 80.30.10 606.02 1.2 5.12 1.12 MA Royal 118 OK 37 4 70 20:14 80.30.10 606.02 1.2 5.12 1.12 MA Sward 120 OK 310 6 65 30.30.10 606.02 1.2 3.6 1.6 1.0 MA Sward 122 OK 128 1.1 35 1.2 3.6 1.4 1.				Littlesister	103	OK	316	-12	51	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Ricken_L 114 CV 35 56 4.4 20.24 30.6010 60.6020 1.2 3.6 1.6 Frynil 113 CV 13 C 30 20.21 20.020 20.02 20.0010 60.6020 1.2 6.12 1.12 MA Frynil 110 CV 130 CV 130 2.01 20.0010 60.6020 1.2 6.12 1.21 MA Sward 130 CV 130 CV 130 50 20.01 60.6020 1.2 6.12 1.22 MA Sward 120 CV 120 CV 120 60.6020 1.2 6.12 1.22 MA Sward 100 CV 150 100 150 2.01 30.0010 60.6020 1.2 6.12 1.22 MA Sward 110 CV 150 100 100 120 2.01 30.0010 60.6020 1.2				Longsister	104	OK	284	-33	13	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Boyal 118 Or 12 6 9 2.2.1 80.00.10 60.00.00 1,2 6,12 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,13 1,13 1,12 1,12 1,12 1,12 1,13 1,13 1,12 1,12 1,12 1,12 1,13				Rickon_L	114	OK	53	56	44	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
Royall 119 OK 139 6 9 3.0.0.11 8.0.0.0.0 6.0.0.0 1.2 6.1.2 1.1.2 NA Samal 102 OK 120 0.4 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 120 111 110				Royal	118	ОК	19	8	9	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Sama 100 04. 320 -4 70 24.11 30.90.10 60.90.10 1.12 6.12 1.12 MA Sama 2 212 0.6 130 6.1 60 60.90.10 60.				Royal1	119	OK	19	8	9	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Shear 11 0K 120 0K				Sansa	120	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
Strand L13 OK L42 L13 D2 L141 D200010 D000000 L14 D15 L14 Storbed 125 OK 44 5 522 2244 3003010 C000000 1.2 6.12 1.12 MA Storpporg 127 OK 254 300 85 22041 3003010 C060020 1.2 6.12 1.12 MA Storpporg 127 OK 354 10 85 22041 3003010 C060200 1.2 6.12 1.12 MA Tully 130 OK 16 28 67 22041 3003010 C060200 1.2 6.12 1.12 MA UK_VMH 138 102 107 0 14 2241 3003010 C0606020 1.2 3.12 1.18 MA UK_VMH 136 OK 120 0 15 2241 3003010 C0606020 1.2 3.5<				Shear2	121	OK	310	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
Souchesta 125 OK 4 6 22 32.04 30.04.01 60.602.00 1.2 6.12 1.13 NA Souchesta 127 OK 236 1.0 050 1.22 6.12 1.12 NA SweetStare 129 OK 336 17 25 2.24.1 30.020.10 69.660.20 1.2 6.12 1.12 NA Tulky 330 OK 154 2.8 7 2.54 30.020.10 69.660.20 1.2 6.12 1.12 NA UKVNL 333 102 154 0 15 2.24.4 30.020.10 60.660.20 1.2 6.12 1.12 NA UKVNL 333 102 107 0 14 22.44 30.020.10 60.660.20 1.2 6.12 1.12 NA UKVNL 335 102 107 0 14 22.44 30.020.10 60.660.20 1.2 6.12 1.12 NA UKVNL 335 0K 139 0K 139				Shears Shear4	122	OK	142	-11	55	2x2x1	30x30x10	60x60x20	1,2	5,6	1,0	1 NA
Strongeng 127 OK 284 4.00 85 2.2x1 30x40.00 50x40.00 1.2 6.12 1.12 NA SweetSiter 130 OK 366 17 25 2.2x1 30x40.00 60x40.00 1.2 6.12 1.12 NA Tuly 130 00X 156 28 67 2.2x1 30x40.00 60x60.20 1.2 6.12 1.12 NA UK_VNI 133 102 107 0 144 2.2x1 30x40.00 60x60.20 1.2 6.12 1.12 NA UK_VNI 136 02 107 0 144 2.2x1 30x40.00 60x60.20 1.2 2.3 1.3 NA UK_VNI 136 0X 126 0 155 2.2x1 30x40.00 60x60.00 1.2 2.35 1.5 NA UK_VNI 136 0X 126 0.2 126 1.2 NA <td< td=""><td></td><td></td><td></td><td>Southlode1</td><td>125</td><td>OK</td><td>4</td><td>6</td><td>22</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>6,12</td><td>1,12</td><td>NA</td></td<>				Southlode1	125	OK	4	6	22	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
SweatSiter 129 0/c 336 17 2 5 2 42:1 30:30:10 60:60:20 1,2 6,12 1,12 NA VMC_VNI 133 0/2 154 0 15 2 42:1 30:30:10 60:60:20 1,2 6,112 1,12 NA VMC_VNI 133 102 107 0 14 2 42:1 30:30:10 60:60:20 1,2 6,112 1,12 NA UAC_VNA 136 102 107 0 14 2 42:1 30:30:10 60:60:20 1,2 3,12 1,12 NA UAC_VNA 136 0/2 107 0 14 2 42:1 30:30:10 60:60:20 1,2 3,12 1,12 NA WhetWalker 137 0K 138 0 35 2 42:1 30:30:10 60:60:20 1,2 6,12 1,12 NA 100_0_2_WTH 139 0/K 2 36 46 2 42:1 30:30:10				Strongsong	127	OK	254	-10	85	2x2x1	30x30x10	60x60x20	1.2	6.12	1.12	NA
Tufly 130 0.c 16 28 67 2.2/2.1 30.30.10 60x60.20 1.2 5.12 1.11 NA 134 102 107 0 14 2.2/2.1 30.30.10 60x60.20 1.2 6.11 1.11 NA 134 102 107 0 14 2.2/2.1 30.30.10 60x60.20 1.2 5.12 1.12 NA 144 136 102 107 0 14 2.2/2.1 30.30.10 60x60.20 1.2 2.3 1.3 NA 146_W14 138 0K 130 0 2.35 1.5 NA Whetwalker 138 0K 130 0 2.5 2.2/2.1 30.30.10 60x60.20 1.2 6.12 1.12 NA 10D.0_1_M14 139 0K 2 36 46 2.2/2.1 30.30.10 60x60.20 1.2 6.12 1.12 NA 10D_0_4_M174 142				SweetSister	129	ОК	336	17	25	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
UHC_VN1 133 ID2 154 00 15 22x1 3032h10 60x60x20 1,2 6,11 1,11 NA 134 ID2 107 0 144 2x2x1 30x32h10 60x60x20 1,2 5,12 1,12 NA UAC_VM4 135 ID2 107 0 144 2x2x1 30x32h10 60x60x20 1,2 3,12 1,12 NA UAC_VM4 135 OK 130 0 25 2x2x1 30x32h10 60x60x20 1,2 5,15 1,4X UMC_VM4 137 OK 150 0 35 2x2x1 30x32h10 60x60x20 1,2 6,12 1,12 NA IDD_01_VTH 139 OK 2 36 46 2x2x1 30x32h10 60x60x20 1,2 6,12 1,12 NA IDD_02_VTH 140 OK 245 34 53 2x11 30x32h10 60x60x20 1,2 6,12 <td></td> <td></td> <td></td> <td>Tully</td> <td>130</td> <td>OK</td> <td>16</td> <td>28</td> <td>67</td> <td>2x2x1</td> <td>30x30x10</td> <td>60x60x20</td> <td>1,2</td> <td>6,12</td> <td>1,12</td> <td>NA</td>				Tully	130	OK	16	28	67	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
134 102 107 0 14 22x11 30:30:10 60:60:20 1,2 6,12 1,12 NA 135 102 107 0 14 2x211 30:30:10 60:60:20 1,2 3,2 1,3 NA UAC_VM4 136 0K 120 0 15 2x211 30:30:10 60:60:20 1,2 3,3 1,3 NA UAC_VM4 137 0K 130 0 25 2x211 30:30:10 60:60:20 1,2 5,12 1,12 NA UD_01_VM1 139 0K 2 36 46 2x211 30:30:10 60:60:20 1,2 5,12 1,12 NA 100_02_VM1 140 0K 345 34 53 2x211 30:30:10 60:60:20 1,2 5,12 1,12 NA 100_04_VM1 142 0K 345 34 53 2x211 30:30:10 60:60:20 1,2 5,12				UAC_VN1	133	ID2	154	0	15	2x2x1	30x30x10	60x60x20	1,2	6,11	1,11	NA
135 102 107 0 14 2x2x1 30x30x0 50x60x20 1,2 3,12 1,12 NA UAC_VM4 136 0K 120 0 15 2x2x1 30x30x10 50x60x20 1,2 2,3 1,3 NA UAC_VM5 137 0K 138 0K 120 30x30x10 50x60x20 1,2 2,3 1,5 NA Whetwalker 138 0K 120 36 46 2x2x1 30x30x10 50x60x20 1,2 6,12 1,12 NA 10D_0_2,NTH 139 0K 2 36 46 2x2x1 30x30x10 50x60x20 1,2 6,12 1,12 NA 1DD_0_2,NTH 141 0K 345 34 53 2x2x1 30x30x10 50x60x20 1,2 6,12 1,12 NA 1DD_0_5,NTH 143 0K 345 34 53 2x2x1 30x30x10 50x60x20 1,2 6,12					134	ID2	107	0	14	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
UAC_VM4 136 OK 120 0 15 2.22A1 303/0.10 60x60/20 1,2 2,3 1,3 NA UAC_VM5 137 OK 138 OK 130 0 25 2.22A1 303/0.10 60x60/20 1,2 5,12 1,12 NA IDD_01_NTH 139 OK 2 36 46 2.22A1 300/0.10 60x60/20 1,2 6,12 1,12 NA IDD_02_NTH 140 OK 2 36 46 2.22A1 300/0.10 60x60/20 1,2 6,12 1,12 NA IDD_02_NTH 142 OK 345 34 53 2.22A1 300/0.10 60x60/20 1,2 6,12 1,12 NA IDD_06_NTH 142 OK 345 34 53 2.22A1 300/0.10 60x60/20 1,2 6,12 1,12 NA IDD_06_NTH 142 OK 136 54 -14 2.22A1 300/0.10 60x60/20 1,2 6,12 1,12 NA IDD					135	ID2	107	0	14	2x2x1	30x30x10	60x60x20	1,2	3,12	1,12	NA
UAC_VM5 137 OK 158 0 35 2.42.1 30:30.40 60:460.20 1,2 3,5 1,5 NA WhTeWarker 138 OK 130 O 25 2.42.1 30:30:40 60:460.20 1,2 6,12 1,12 NA IDD_00_1/MTH 139 OK 2 36 46 2.42.1 30:30:40 60:460.20 1,2 6,12 1,12 NA IDD_00_3/MTH 141 OK 345 34 53 2.42.1 30:30:40 60:460.20 1,2 6,12 1,12 NA IDD_00_4/MTH 142 OK 345 34 53 2.42.11 30:30:40 60:460:20 1,2 6,12 1,12 NA IDD_00_4/MTH 142 OK 345 34 53 2.42:1 30:30:40 60:460:20 1,2 6,12 1,12 NA IDD_00_5/MTH 143 OK 345 34 53 2.42:1 30:30:40 60:460:20 1,2 6,12 1,12 NA IDD_00_5/MTH				UAC_VN4	136	OK	120	0	15	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	NA
WhiteWalker 138 OK 130 O 25 2/2/11 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_01_WH 139 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_03_WH 141 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_04_WH 142 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_WH 143 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_WHH 144 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_WHH 145 OK 320 -26 44 2x2x1 30x30x10				UAC_VN5	137	OK	158	0	35	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
IDD_0_N/H 139 0K 2 36 46 21211 500010 6006020 1,2 6,20 1,12 1,20 2 IDD_03_N/H 144 0K 345 34 53 212x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_04_N/H 141 0K 345 34 53 212x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_N/H 142 0K 345 34 53 212x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_N/H 143 0K 345 34 53 22x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_N/H 144 0K 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_N/H 144 0K 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_N/H				WhteWalker	138	OK	130	0	25	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_03_VTH 141 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_04_VTH 142 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_VTH 143 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_VTH 144 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_VTH 144 OK 186 -54 -144 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_VTH 146 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_01_VTH 147 OK 344 42 2x2x1 30x30x10 60x60x2					139	OK	2	30	46	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	2
IDD_04_NTH 112 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_NTH 143 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_NTH 144 OK 145 54 14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_NTH 144 OK 320 -26 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 320 -26 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 341 44 21 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_11_NTH 149 OK 345 34 53 2x2x1 30x30x10				IDD_02_NTH	140	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	6,20	1,20	NA
IDD_05_NTH 143 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_05_NTH 144 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_06_NTH 144 OK 320 -26 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_09_NTH 147 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 147 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_14_NTH 150				IDD 04 NTH	142	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_06_NTH 144 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_07_NTH 145 OK 320 -26 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 147 OK 341 44 21 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 147 OK 341 44 21 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 149 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 150 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 151 </td <td></td> <td></td> <td></td> <td>IDD_05_NTH</td> <td>143</td> <td>OK</td> <td>345</td> <td>34</td> <td>53</td> <td>2x2x1</td> <td>30x30x10</td> <td>60x60x20</td> <td>1,2</td> <td>6,12</td> <td>1,12</td> <td>NA</td>				IDD_05_NTH	143	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_07_NTH 145 OK 320 -26 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_08_NTH 146 OK 24 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_01_NTH 147 OK 341 44 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_11_NTH 149 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 150 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 247 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK				IDD_06_NTH	144	ОК	186	-54	-14	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_08_NTH 146 0K 2 36 46 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_09_NTH 147 0K 341 44 21 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_01_1_NTH 147 0K 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 149 0K 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 150 0K 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 151 0K 247 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 154 0K 338 -30 90 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_16_NTH 155 <td></td> <td></td> <td></td> <td>IDD_07_NTH</td> <td>145</td> <td>OK</td> <td>320</td> <td>-26</td> <td>44</td> <td>2x2x1</td> <td>30x30x10</td> <td>60x60x20</td> <td>1,2</td> <td>6,12</td> <td>1,12</td> <td>NA</td>				IDD_07_NTH	145	OK	320	-26	44	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_09_NTH 147 OK 341 44 21 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 2 IDD_11_NTH 149 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_12_NTH 150 OK 346 -54 -14 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 151 OK 60 -4 15 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 151 OK 60 -4 15 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 267 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 155 OK 267 0 47 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NTH 155 OK				IDD_08_NTH	146	OK	2	36	46	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_11_NTH 149 OK 345 34 53 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_11_NTH 150 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 151 OK 60 -4 15 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 151 OK 60 -4 15 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 60 -4 15 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 267 0 90 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NTH 156 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NTH 156				IDD_09_NTH	147	OK	341	44	21	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	2
IDU_12_NIH 150 OK 186 -54 -14 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_13_NTH 151 OK 247 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 247 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 247 5 65 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_15_NTH 154 OK 338 -30 90 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_17_NTH 155 OK 216 0 47 2 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NTH 156 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA <td< td=""><td></td><td></td><td></td><td>IDD_11_NTH</td><td>149</td><td>OK</td><td>345</td><td>34</td><td>53</td><td>2x2x1</td><td>30x30x10</td><td>60x60x20</td><td>1,2</td><td>6,12</td><td>1,12</td><td>NA</td></td<>				IDD_11_NTH	149	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_15_NTH 151 OK 60 -4 15 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 247 5 65 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_15_NTH 153 OK 247 5 65 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_15_NTH 155 OK 238 -30 90 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_17_NTH 155 OK 267 0 47 2X2XI 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_18_NTH 156 OK 316 -12 51 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_18_NTH 156 OK 316 -12 51 2XXII 30X30X10 60X60X20 1,2 6,12 1,12 NA IDD_19_NTH 157				100_12_NTH	150	OK	186	-54	-14	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
IDD_15_NITH 153 OK 247 5 55 2xXx1 30x30X10 60x60X20 1,2 3,6 1,6 1 IDD_15_NITH 154 OK 267 0 47 2x2x1 30x30X10 60x60x20 1,2 6,12 1,12 NA IDD_17_NITH 155 OK 267 0 47 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NITH 155 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_18_NITH 155 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_19_NITH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_19_NITH 158 DNE - - - - - - - - - - - - - - -				IDD_13_N/H	151	OK	247	-4	15	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	1
IDD_12_WTH 157 OK 250 150 2xXx1 30x30x10 60x60x20 1,2 6,12 1,12 2(ep1),NA IDD_18_NTH 156 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 2(ep1),NA IDD_18_NTH 156 OK 316 -12 51 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 2(ep1),NA IDD_19_NTH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_20_NTH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_20_NTH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_20_NTH 157 OK 326 -20 79 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA					153		24/	-30	90	2x2X1 2x2x1	30x30x10	60x60x20	1,2	5,5	1,5	1 NA
IDD_11_WTH 155 OK 105 107 1242 100200 1,2 6,12 1,12 1,12 1,14 IDD_19_WTH 156 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA IDD_19_WTH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 3,6 1,6 1 IDD_20_WTH 158 DNE IDD IDD_20_WTH 158 OK 326 -20 79 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA				IDD 17 NTH	155	OK	267	-50	47	2x2x1	30x30x10	60x60x20	1.2	6.12	1 12	2 (en1) NA
IDD_19_NTH 157 OK 4 -17 45 2x2x1 30x30x10 60x60x20 1,2 3,12 1,12 1,16 1 IDD_20_NTH 158 DNE 1,6 1 IDD_20_NTH 158 DNE <				IDD 18 NTH	156	OK	316	-12	51	2x2x1	30x30x10	60x60x20	1.2	6.12	1.12	NA
IDD_20_NTH 158 DNE IDD_20_NTH 159 0K 326 -20 79 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA				IDD_19 NTH	157	OK	4	-17	45	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
IDD_21_NTH 159 OK 326 -20 79 2x2x1 30x30x10 60x60x20 1,2 6,12 1,12 NA				IDD_20_NTH	158	DNE							-			
				IDD_21_NTH	159	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA

Criteria	IORC Code Explanation	Commentary													
ententa	Some code Explanation	connicitally	IDD 22 NTH	160	OK	227	20	04	2+2+1	20+20+10	60×60×20	1.2	6.12	1 1 2	NA
			Duncan I	160	OK	300	-30	75	2x2x1	30x30x10	60x60x20	1,2	3.6	1,12	NA
			MAR XV08	162	ID2	263	0	74	2x2x1	30x30x10	60x60x20	1.2	3.8	1.8	NA
			ROD	163	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			AGG	164	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			SheepStealer	167	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	3,8	1,8	NA
			Shaggydog	168	ID2	7	0	60	2x2x1	30x30x10	60x60x20	1,2	3,8	1,8	NA
			Direwolf	170	OK	152	14	21	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			Kalsel_rw	171	OK	27	-5	20	2x2x1	30x30x10	60x60x20	1,2	5,0	1,0	NA
				173	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1.2	6.12	1.12	NA
				174	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				175	ОК	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				177	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			Baratheon	178	OK	21	-7	10	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
			Lwr_King_splay2	179	ID2	155	0	15	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
			Domo	180	OK	109	17	-10	2x2x1	30x30x10	60x60x20	1,2	5,9	1,9	NA
			Dome	183	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3.6	1.6	1
				184	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				185	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				186	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				191	OK	77	5	70	2x2x1	30x30x10	60x60x20	1,2	6,12	3,12	NA
				192	OK	41	-27	62	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				193	OK	16	-25	5	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				195	OK	255	-25	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,0	NA
				196	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				197	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				198	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				199	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				210	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				211	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				215	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	5,0	1,0	NA
				215	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				216	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				217	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				218	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				219	OK	255	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				230	OK	220	6	70	2x2x1	30x30x10	60x60x20	1,2	3,8	1,8	NA
				232	OK	306	-11	13	2x2x1	30x30x10	60x60x20	1,2	6.12	1,12	2
				233	OK	306	-11	13	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				234	ОК	306	-11	13	2x2x1	30x30x10	60x60x20	1,2	2,2	1,2	NA
				239	OK	310	-5	85	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
				243	OK	128	44	-76	2x2x1	30x30x10	60x60x20	1,2	6,12	1,12	NA
				248	ID2	162	0	70	2x2x1	30x30x10	60x60x20	1,2	3,9	1,9	NA
			Baelor FW	249	UK ID2	251	0	43	2x2x1	30x30x10	60x60x20	1,2	5,5	1,5	NA
			Baelor HW	252	ID2	288	0	44	2x2x1	30x30x10	60x60x20	1,2	3.5	1.5	NA
			Duncan Splay	253	ID2	291	0	82	2x2x1	30x30x10	60x60x20	1,2	2,4	1,4	NA
			Duncan_L_Splay	254	OK	326	-20	79	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			West Decline Lode	255	OK	313	-19	69	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			Concer Color	256	OK	320	-26	44	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
			Sansa Spiay	257	OK	516	-12	51	2x2x1	30x30x10	60x60x20	1,2	4,11	1,11	NA
			Kingdom U3	259	OK	5	-19	5	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	1
			Kingdom_U4	260	OK	45	0	0	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			Wildings	261	ID2	217	0	29	2x2x1	30x30x10	60x60x20	1,2	3,11	1,11	NA
			Syrax_West	262	ID2	260	0	70	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			Imperial_N_FW	263	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			Imperial_N_Link	264	ID2	352	0	70	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA

Criteria	JORC Code Explanation	Commentary												
			768	OK	320	-26	44	2x2x1	30x30x10	60x60x20	1,2	3,4	1,4	NA
			769	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	6,13	1,13	NA
			774	ID2	17	0	51	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			775	ОК	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			776	OK	19	42	63	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			777	OK	19	42	63	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
			778	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			779	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,8	1,8	NA
			 782	OK	345	34	53	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			 783	OK	313	-19	69	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			 784	OK	9	54	73	2x2x1	30x30x10	60x60x20	1,2	3,4	1,4	NA
			 786	OK	19	42	63	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			787	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			 788	OK	39	42	39	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
			 789	ОК	356	-60	80	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	NA
			 790	ОК	19	42	63	2x2x1	30x30x10	60x60x20	1,2	6,19	1,19	NA
			 791	OK	342	0	78	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			792	OK	53	56	44	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			 793	OK	9	54	/3	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			 794	OK	19	42	65	2x2x1	30x30x10	60x60x20	1,2	3,0	1,6	NA
			795	OK	19	42	60	2x2x1	30x30x10	60x60x20	1,2	3,12	1,12	NA
			 790	OK	220	92	44	2x2x1	20x20x10	60x60x20	1,2	3,0	1,0	NA
			792		19	-20	63	2x2x1	30x30x10	60x60x20	1,2	3,11	1,11	NA
			799		- 15	54	72	2×2×1	20x20x10	60x60x20	1.2	2.12	1,5	NA
			800	102	21	0	42	2x2x1	30x30x10	60x60x20	1,2	3.8	1,15	NA
			 876	102	146	0	83	2x2x1	30x30x10	60x60x20	1,2	3.4	1,0	NA
			 877	0K	338	-30	90	2x2x1	30x30x10	60x60x20	1.2	3.5	15	NA
			 878	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1.2	3.10	1.10	NA
			879	102	128	0	87	2x2x1	30x30x10	60x60x20	1.2	2.3	1.3	NA
			880	OK	313	-19	69	2x2x1	30x30x10	60x60x20	1.2	2.3	1.3	NA
			881	ОК	313	-19	69	2x2x1	30x30x10	60x60x20	1.2	1.2	1.2	NA
			882	ОК	313	-19	69	2x2x1	30x30x10	60x60x20	1,2	3,9	1,9	NA
			883	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,6	1,6	NA
			884	ID2	312	0	75	2x2x1	30x30x10	60x60x20	1,2	3,4	1,4	NA
			885	ОК	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,13	1,13	NA
			886	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,7	1,7	NA
			887	OK	329	-4	70	2x2x1	30x30x10	60x60x20	1,2	3,15	1,15	NA
			889	ID2	160	0	87	2x2x1	30x30x10	60x60x20	1,2	3,9	1,9	NA
			891	OK	342	0	78	2x2x1	30x30x10	60x60x20	1,2	3,9	1,9	NA
			 892	OK	320	-26	44	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	NA
			 893	ID2	322	0	83	2x2x1	30x30x10	60x60x20	1,2	3,10	1,10	NA
			 894	OK	327	-30	84	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
			895	OK	9	54	73	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	NA
			 897	OK	327	-30	84	2x2x1	30x30x10	60x60x20	1,2	3,5	1,5	NA
			 898	OK	316	-12	51	2x2x1	30x30x10	60x60x20	1,2	3,8	1,8	NA
			899	OK	9	54	/3	2x2x1	30x30x10	60x60x20	1,2	2,3	1,3	1
			978	ID2	2/1	0	8/	2x2x1	30x30x10	60x60x20	1,2	3,/	1,/	NA
			9/9	ID2	264	0	//	2x2x1	30x30x10	60x60x20	1,2	3,7	1,/	NA
			 901	102	2/1	0	0/	2x2x1	20x20x10	60x60x20	1.2	3,6	1,5	NA
			 992	102	271	0	97	2x2x1	30x30x10	60x60x20	1,2	2,0	1.0	NA
			994	102	2/1 271	0	97	2x2x1	30x30x10	60x60x20	1.2	3,0	1,0	NA
			 995	02	4	6	22	2x2x1	20x20x10	60x60x20	1.2	2,0	1,0	NA
			 987	ID2	102	0	72	2x2x1	30x30x10	60x60x20	1.2	3.10	1,10	NA
			988	102	270	0	35	2x2x1	30x30x10	60x60x20	1.2	3.5	15	NA
			989	102	271	0	87	2x2x1	30x30x10	60x60x20	1.2	3.6	1.6	NA
			 990	OK	284	-33	13	2x2x1	30x30x10	60x60x20	1.2	2.3	1.3	NA
			556	UN	201	-55		E0504	20120120	SONGOVED	-,-	-,-	1,2 -	110

Criteria	JORC Code Explanation	Commentar	ry														
							Variogra	m Ellipse			Structure 1	1 (XYZ)			Structure	2 (XYZ)	
			DOMAIN	DOM_CODE	Est Type	Bearing	DIP	PLUNGE	NUGGET	Major (m)	Semi-Major (m)	Minor (m)	Sill	Major (m)	Semi-Major (m)	Minor (m)	Sill
		Tra	ansported	500	ID2			(titts empse)									
			Oxide	501	ID2												
		Tra	ansitional	502	OK	259.81	-15.86	24.48	0.5	17	6	6	0.175	33	13	13	0.325
			WASTE	998	OK	259.81	-15.86	24.48	0.5	17	6	6	0.175	33	13	13	0.325
		в	BK SD1U	997	OK	259.81	-15.86	24.48	0.5	17	6	6	0.175	33	13	13	0.325
		В	BK_SD1G	994	OK	259.81	-15.86	24.48	0.5	17	6	6	0.175	33	13	13	0.325
		В	BK_SD2U	996	OK	259.81	-15.86	24.48	0.55	14.4	10	10	0.194	60	15	25	0.256
		B	BK_SD2G	993	OK	259.81	-15.86	24.48	0.55	14.4	10	10	0.194	60	15	25	0.256
		KI	THEON	2	OK	128.149	44.136	-75.998	0.281	22	22	5	0.4124	60	55	10	0.3063
			OSHA	3	ОК	168.12	-9.062	-23.399	0.29	29	20	5	0.4356	105	53	10	0.2744
		W	Vesteros	5	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
			Shear 7	7	OK	177.345	2.664	-14.767	0.372	7	5	5	0.3681	77	36	10	0.2594
			Baelor	8	OK	78.4	-39.025	9.577	0.492	24	24	5	0.2564	140	113	10	0.2518
			Kaiser Kaiser1	10	OK	356.726	23.536	-15.477	0.067	7	3	5	0.5792	153	60	10	0.3595
			Kaiser2	11	OK	301.701	25.543	-11.877	0.061	18	12	5	0.5904	122	53	10	0.3482
		Re	egal Splay	12	OK	197.995	-22.761	-33.826	0.083	29	29	5	0.6631	94	47	10	0.2543
			REGAL	13	OK	79.425	-16.74	58.525	0.153	5	5	5	0.5529	119	119	10	0.2942
		In	mperial N	14	OK	200.311	-31.233	-16.666	0.307	9	9	5	0.4595	86	86	10	0.2333
		Im	nperial N1	15	OK	334.7	19.93	1.708	0.138	57	25	5	0.4318	93	45	10	0.4297
		Im	nperial N3	17	OK	200.311	-31.233	-16.666	0.307	9	9	5	0.4595	86	86	10	0.2333
		In	mperial S	18	OK	108.567	-10.314	17.229	0.159	8	8	5	0.6519	43	43	10	0.189
		Ki	ingdom U	19	OK	291.641	30.48	-13.307	0.409	22	22	5	0.2362	137	63	10	0.3552
		Kin	ingdom_L	20	OK	5.287	1.719	-18.925	0.299	10	6	5	0.47	94	85	10	0.2309
			Gilly	22	OK	309.563	84.981	-4.981	0.149	6	6	5	0.5816	88	41	10	0.2694
			Duncan	23	OK	300	75	0	0.579	5	5	5	0.3191	62	62	10	0.1014
			ARRYN	24	OK	246.466	49.568	7.644	0.516	33	28	5	0.3169	114	49	10	0.167
				25	OK	246.466	49.568	7.644	0.516	33	28	5	0.3169	114	49	10	0.167
				20	OK	246.466	49.568	7.644	0.516	33	28	5	0.3169	114	49	10	0.167
		(Catelyn	28	OK	326.754	79.849	9.847	0.172	30	20	5	0.3522	98	54	10	0.4754
				31	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				32	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				33	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				35	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				36	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				37	OK	313.898	56.31	-25.659	0.505	25	23	5	0.4046	76	38	10	0.0903
				38	OK	313.898	56.31	-25.659	0.505	25	23	5	0.4046	76	38	10	0.0903
				40	OK	351.124	57.501	21.469	0.27	45	22	5	0.3718	129	40	10	0.3578
				42	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				43	OK	351.468	66.043	32.615	0.217	24	24	5	0.2748	100	83	10	0.5085
				44	OK	342	78	0	0.334	26	11	5	0.6158	188	95	10	0.05
				45	OK	2/1.882	49.4/6	28.024	0.231	19	19	5	0.5155	8/	8/	10	0.4533
				47	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				49	OK	342	78	0	0.334	26	11	5	0.6158	188	95	10	0.05
				50	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				51	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				52	OK	312,904	68.827	-5.758	0.119	20	54	5	0.4203	104	104	10	0.3943
				54	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				55	ОК	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425

Criteria	JORC Code Explanation	Commenta	rv														
			- 1	56	OK	342	78	0	0 334	26	11	5	0.6158	188	95	10	0.05
				57	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
			Robin	58	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
				60	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				61	OK	25.084	77.895	24.51	0.192	11	20	5	0.4795	47	47	10	0.329
				62	OK	25.084	77.895	24.51	0.192	11	20	5	0.4/95	4/	4/	10	0.329
				64	OK	356.416	80.075	-59.624	0.145	6	6	5	0.519	43	43	10	0.3358
				65	OK	351.124	57.501	21.469	0.27	45	22	5	0.3718	129	40	10	0.3578
				66	ОК	41.461	-64.231	-13.566	0.456	39	39	5	0.2426	99	92	10	0.3017
			Yara	73	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
			Bran_U	75	OK	246.466	49.568	7.644	0.516	33	28	5	0.3169	114	49	10	0.167
			EF01A EF01B	76	OK	39.323	39.323	42.145	0.19	26	22	5	0.4655	121	74	10	0.3444
			EF02	81	OK	53.096	43.508	55.889	0.147	10	10	5	0.6387	74	50	10	0.2138
			EF03	82	OK	25.084	77.895	24.51	0.192	11	20	5	0.4795	47	47	10	0.329
			EF05	83	ОК	356.416	80.075	-59.624	0.145	6	6	5	0.519	43	43	10	0.3358
			EF06A	84	OK	53.096	43.508	55.889	0.147	10	10	5	0.6387	74	50	10	0.2138
			EF08	87	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
			Emperor	89	OK	3.855	22.294	5.804	0.125	37	30	5	0.6881	128	50	10	0.1866
			GR02	95	OK	16 545	10.43	2.576	0.162	24	24	6	0.5649	50	50	10	0.2929
			GR03	96	OK	16.545	10.43	-5.967	0.142	9	9	6	0.5649	50	50	10	0.2929
			Ironoaks	100	OK	202.957	13.468	-32.615	0.467	24	11	5	0.2715	46	31	10	0.2616
			Lemonwood	102	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
			Littlesister	103	OK	315.632	51.032	-11.768	0.338	64	64	10	0.6625				
			Longsister	104	OK	283.957	13.468	-32.615	0.263	25	13	2	0.4732	51	51	10	0.264
			Rickon_L	114	OK	19 267	45.508	9 454	0.147	10	10	5	0.6387	61	50	10	0.2138
			Roval1	119	OK	19.367	8.548	8.454	0.203	18	18	5	0.4043	61	61	10	0.3929
			Sansa	120	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
			Shear2	121	OK	309.563	84.981	-4.981	0.149	6	6	5	0.5816	88	41	10	0.2694
			Shear3	122	OK	128.398	33.344	-11.313	0.279	32	26	5	0.5113	64	34	10	0.2094
			Shear4	123	OK	141.651	6.918	5.771	0.461	18	18	5	0.3136	33	33	10	0.2258
			Southlode1	125	OK	3.855	22.294	5.804	0.125	37	30	5	0.6881	128	50	10	0.1866
			SweetSister	127	OK	336 233	25 311	-5.562	0.325	52 52	29	5	0.4248	111	50	10	0.2525
			Tully	130	OK	16.17	67.204	28.024	0.382	22	22	5	0.3765	152	76	10	0.2412
			UAC_VN1	133	ID2												
				134	ID2												
				135	ID2												
			UAC_VN4	136	OK												
			WhteWalker	137	OK	130	25	0	0.232	29	29	5	0.673	321	321	10	0.0949
			IDD 01 NTH	139	OK	2.214	46.352	35.889	0.443	36	36	5	0.4225	91	91	10	0.1349
			IDD_02_NTH	140	OK	2.214	46.352	35.889	0.443	36	36	5	0.4225	91	91	10	0.1349
			IDD_03_NTH	141	OK	344.76	52.995	33.826	0.209	6	6	5	0.6106	94	46	10	0.1805
			IDD_04_NTH	142	OK	344.76	52.995	33.826	0.209	6	6	5	0.6106	94	46	10	0.1805
			IDD_05_NTH	143	OK	344.76	52.995	33.826	0.209	6	6	5	0.6106	94	46	10	0.1805
			IDD_06_NTH	144	OK	185.912	-13.928	-53.776	0.118	~	/ 。	5	0.5663	115	73	10	0.3158
			IDD 08 NTH	145	OK	2.214	46.352	35,889	0.443	36	36	5	0.4225	91	91	10	0.1349
			IDD 09 NTH	147	OK	341.456	20.799	44.293	0.355	24	24	5	0.3906	160	41	10	0.2546
			IDD_11_NTH	149	OK	344.76	52.995	33.826	0.209	6	6	5	0.6106	94	46	10	0.1805
			IDD_12_NTH	150	OK	185.912	-13.928	-53.776	0.118	7	7	5	0.5663	115	73	10	0.3158
			IDD_13_NTH	151	OK	60.489	14.511	-3.841	0.331	67	67	5	0.543	490	283	10	0.1262
			IDD_15_NTH	153	OK	247.118	64.916	4.53	0.629	54	19	5	0.3133	248	56	10	0.0579
			IDD_16_NIH	154	OK	358	90	-30	0.024	104	34	5	0.9278	161	51	10	0.048
			IDD 18 NTH	155	OK	315.632	51.032	-11.768	0.338	64	64	10	0.6625	102	50	10	0.0000
			IDD_19_NTH	157	OK	3.855	44.629	-16.604	0.277	98	119	5	0.4244	387	122	10	0.299
			IDD_20_NTH	158	DNE											10	
			IDD_21_NTH	159	ОК	326.384	79.372	-19.683	0.549	12	6	5	0.395	81	33	10	0.0557

Criteria	IOBC Code Explanation	Commenta	arv														
Cinterna	Jone code Explanation	commente	ar y														<u> </u>
			IDD_22_NTH	160	OK	327.119	84.231	-29.874	0.606	24	24	5	0.2025	79	79	10	0.1917
			Duncan_L	161	OK	300	75	0	0.579	5	5	5	0.3191	62	62	10	0.1014
			MAR_XV08	162	ID2	200 204	70 770	10.000	0.540	10	-	5	0.005			10	0.0557
			ROD	163	OK	326.384	79.372	-19.683	0.549	12	6	5	0.395	81	33	10	0.0557
			AGG	164	OK	326.384	79.372	-19.683	0.549	12 6	6	5	0.395	81	33	10	0.0557
			Sharpstealer	167	UN	544.76	52.995	55.826	0.209	•	•	5	0.6106	94	40	10	0.1805
			Dirawolf	100	04	152 200	20,905	14.029	0 609	29	29	10	0 1405	90	90	40	0.2515
			Kaiser FW	170		26.859	36.005	18 747	0.008	9	9	5	0.1400	38	38	10	0.4529
				172	OK	254 563	84 981	-4 981	0.323	3	3	5	0.1137	42	41	10	0.5635
				173	OK	254,563	84,981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				174	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				175	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				177	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
			Baratheon	178	OK	20.593	9.877	-6.849	0.082	9	9	5	0.4246	47	45	10	0.493
			Lwr_King_splay2	179	ID2												
			Stark	180	OK	108.567	-10.314	17.229	0.159	8	8	5	0.6519	43	43	10	0.189
			Dome	181	OK	108.567	-10.314	17.229	0.159	8	8	5	0.6519	43	43	10	0.189
				183	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				184	OK	326.384	79.372	-19.683	0.549	12	6	5	0.395	81	33	10	0.0557
				185	OK	326.384	79.372	-19.683	0.549	12	6	5	0.395	81	33	10	0.0557
				186	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				191	OK	76.714	69.93	4.698	0.158	37	9	5	0.351	74	42	10	0.4908
				192	OK	41.288	61.7	-26.946	0.03	53	25	5	0.5314	203	81	10	0.4389
				195	OK	16.01	4.629	-24.595	0.066	20	20	10	0.2551	110	50	10	0.679
				194	OK	254 562	49.019	11.456	0.045	20	20	10	0.5555	42	41	10	0.5635
				195	OK	254.563	84 981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				197		254 563	84 981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				198	OK	254,563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				199	OK	254,563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				210	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				211	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				213	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				214	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				215	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				216	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				217	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				218	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				219	OK	254.563	84.981	-4.981	0.323	3	3	5	0.1137	42	41	10	0.5635
				230	ОК	141.651	6.918	5.771	0.461	18	18	5	0.3136	33	33	10	0.2258
				231	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				232	OK	306.255	13.181	-10.832	0.274	15	15	5	0.2789	46	34	10	0.447
				255	OK	206.255	12.101	-10.852	0.274	15	15	5	0.2789	46	24	10	0.447
				239		309 563	84 981	-4 981	0.149	5	5	5	0.5816	88	41	10	0.2694
				243	OK	128 149	-75 998	44 136	0.281	22	22	5	0.3310	60	55	10	0.3063
				248	ID2							5				10	0.2002
				249	OK	163	-24	0	0.379	18	7	2	0.4934	61	39	10	0.1281
			Baelor FW	251	ID2							5				10	
			Baelor HW	252	ID2							5				10	
			Duncan Splay	253	ID2							5				10	
			Duncan_L_Splay	254	OK	326.384	79.372	-19.683	0.549	12	6	5	0.395	81	33	10	0.0557
			West Decline Lode	255	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
				256	OK	320.768	44.311	-26.065	0.372	8	8	5	0.4571	90	71	10	0.1709
			Sansa Splay	257	OK	315.632	51.032	-11.768	0.338	64	64	10	0.6625			10	<u> </u>
			Kingdom_U2	258	OK	5.287	1.719	-18.925	0.299	10	6	5	0.47	94	85	10	0.2309
			Kingdom_U3	259	OK	5.287	1.719	-18.925	0.299	10	6	5	0.47	94	85	10	0.2309
			Kingdom_U4	260	OK	45	0	0	0.108	42	42	5	0.6389	561	561	10	0.2527
			Wildings	261	ID2												────
			syrax_west	262	102	29 222	29 222	42 145	0.19	25	22	E	0.4655	121	74	10	0 2444
			Imperial N Link	265	ID2	33.345	37.343	42.140	0.15	20	22	,	0.4000	121	/4	10	0.5444
			construction of the second sec		1 104			1			1						

Criteria	IORC Code Explanation	Comment	arv														
ententa		Somerie		768	OK	320.768	44.311	-26.065	0.372	8	8	5	0.4571	90	71	10	0.1709
				769	OK	39.323	39.323	42.145	0.19	26	22	5	0.4655	121	74	10	0.3444
				774	ID2	20.222	20.222	42.145	0.10	25	22	-	0.4555	101	74	10	0.7444
				776	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				777	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				778	OK	39.323	39.323	42.145	0.19	26	22	5	0.4655	121	74	10	0.3444
				7/9	OK	39.323	52.995	42.145	0.19	26	6	5	0.4655	94	46	10	0.3444
				783	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
				784	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				785	OK	18.882	52.764	41.641	0.422	26	22	5	0.4432	129	82	10	0.1349
				788	OK	39.323	39.323	42.145	0.19	26	22	5	0.4655	121	74	10	0.3444
				789	OK	356.416	80.075	-59.624	0.145	6	6	5	0.519	43	43	10	0.3358
				790	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				792	OK	53.096	43.508	55.889	0.147	10	10	5	0.6387	74	50	10	0.2138
				793	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				794	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				796	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				797	OK	320.768	44.311	-26.065	0.372	8	8	5	0.4571	90	71	10	0.1709
				798	OK	18.882	62.764	41.641	0.422	8	8	5	0.4432	129	82	10	0.1349
				799	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				876	ID2												
				877	OK	338	90	-30	0.024	104	34	5	0.9278	161	51	10	0.048
				878	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				879	ID2	312 904	68 827	-18 747	0.119	86	54	5	0.4872	104	104	10	0 3943
				881	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
				882	OK	312.904	68.827	-18.747	0.119	86	54	5	0.4872	104	104	10	0.3943
				883	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				885	OK	328.63	69 955	-3 758	0.537	20	12	5	0.4203	157	91	10	0.0425
				886	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				887	OK	328.63	69.955	-3.758	0.537	20	12	5	0.4203	157	91	10	0.0425
				889	ID2	342	70	0	0.334	25	11	-	0.6159	100	05	10	0.05
				892	OK	320,768	44.311	-26.065	0.372	26	8	5	0.4571	90	71	10	0.1709
				893	ID2							_					
				894	OK	327.119	84.231	-29.874	0.606	24	24	5	0.2025	79	79	10	0.1917
				895	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				898	OK	315.632	51.032	-11.768	0.338	64	64	10	0.6625	13	13	10	0.1017
				899	OK	8.928	72.912	53.776	0.402	22	22	5	0.4412	44	44	10	0.1564
				978	ID2												
				9/9	ID2							-					
				981	ID2												
				983	ID2												
				984	ID2	3 855	22 294	5.804	0.125	37	30	5	0.6881	128	50	10	0.1866
				987	ID2	5.655	22.234	5.004	0.125	27	50		0.0001	110	50	10	0.1000
				988	ID2												
				989	ID2	202.057	12.400	22.615	0.007	25	12	-	0.4733	F1	F 1	10	0.254
				330	OK	205.557	15.400	-52.615	0.265	25	15	2	0.4732		51	- 10	0.264
	The availability of check estimates, previous	• 0	Ordinary Krig	jing (O	K) or	Inverse	Distan	ce Squa	red (ID	2) were	e comple	eted o	n all dor	nains w	ith comp	arisons	to
	estimates and/or mine production records and	Ь	eclustered	means	and t	ne nrev	ious est	imate a	s well f	or valid	ations [*]	The re	sults we	ere foun	d to be s	atisfacto	nrv
		l u		incuri3		ic picv	545 65	uc u		or vunu						anducte	
	whether the Mineral Resource estimate takes																
	appropriate account of such data.																
					Is				a the s				L -				
	The assumptions made regarding recovery of by-	• N	io assumpti	ons hav	/e bee	en made	e with r	espect t	to the re	ecovery	of by-p	oroduc	ts.				
	products.		-							-	-						
			1														
	Estimation of deleterious elements or other non-	• T	nere has be	en no	estim	ate at t	nis poir	t of del	eterious	s elemei	nts.						
	grade variables of economic significance (e.g. sulfur																
	Grade variables of economic significance (e.g. sullar																
	for acid mine drainage characterisation).																

Section 3: Estima	tion and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
	In the case of block model interpolation, the block size in relation to the average sample spacing and	• The resource used the parent block size of 10m(X) by 10m(Y) by 10m(Z). These were deemed appropriate for the majority of the resource, where the nominal drill spacing is in the order of 20m x 20m.
the search employed.	the search employed.	• Parent blocks for all domains were sub-celled to 0.625m(X) by 0.625m(Y) by 0.625m(Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity.
		Three search estimation runs are used.
An mi An va De us	Any assumptions behind modelling of selective mining units.	 The model has been sub-celled to reflect the narrow veining with the domains updated in Leapfrog Geo to a minimum of 0.2m. A few legacy wireframes are still utilised in this resource estimate and have been modelled based on lithology, ore control, and not a minimum mining width.
	Any assumptions about correlation between variables.	No assumptions have been made regarding correlation between variables.
	Description of how the geological interpretation was used to control the resource estimates.	 The geological interpretation strongly correlates with the mineralised domains. Specifically, where the mineralised domain corresponds with quartz veining and data density (bulk domain). HGV wireframe boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced. Note the accuracies for majority of the HGV at mine scale can vary significantly due to the short strike length of the mineralisation including up and down dip. The purpose of these hard HGV domains are to identify the mineralised corridor. Further infill drilling and mine development is required to accurately position these areas for high grade narrow stoping/mining techniques. For bulk mining (both open pit and underground) the Mineral Resource estimate requires reblocking to suitable dimension to simulate the planned dilution. When the lithology, veining, was less than one meter the updated domains were modelled to a one-meter minimum mining width, these hard lithology boundaries were not honoured in this instance. Bulk wireframe boundaries capture all drill intercepts within the deposit with sub-domains generated in areas of increase data-density improving geological confidence on the nature on mineralisation, stockwork, no hard boundaries enforced.
	Discussion of basis for using or not using grade cutting or capping.	 Top-cuts were employed to reduce the risk of overestimating in the local areas where a few high-grade samples existed.

Criteria	JORC Code Explanation	Commentary												
	•	-	Domain Code	High-Grade	Domain Code	High-Grade	Domain Code	ligh-Grade	Domain Code	High-Grade	Domain Code High-(Grade	Hain Code	High-Grade
			Domain Code	Cut(g/t)	Domain Code	Cut(g/t)	Domain Code	Cut(g/t)	Domain Code	Cut(g/t)	Domain Code Cut(g/t)	hain Code	Cut(g/t)
			1	20	47	15	123	40	174	80	254 NA	30	880 N	
			3	50	50	50	125	20	175	60	255	80	882	NA
			5	40	51	50	129 N	А	178	60	257	20	883	20
			7	20	52	20	130	100	179	NA	258	10	884 1	AI 20
			8	60	53	30	133 1	A 40	180	NA 30	259	30	885	30
			10	45	55	NA	135	10	183	10	261 NA		887	60
			11	NA	56	NA	136 N	A	184	20	262 NA		889	A
			12	25	57	10	137 N	A	185	NA /0	263	10	891	
			13	60	60	NA	138	20	191	30	768 NA		893	NA
			15	4	61	NA	140	20	192	NA	769	20	894 N	A
			16	30	62	NA	141 N	A	193	6	774 NA		895	30
			17	NA	63	NA 10	142	3	194	8	775	20	897	30
			10	35	65	25	143	3	195	50	777 NA	- 30	899	10
			20	60	66	20	145	3	197	10	778	15	978	100
			21	NA	73	45	146	5	198	10	779 NA	_	979	50
			22	60	75	15	147	3	199	30	782	8	980	100
			23	NA	78	30	149	3	210	80	784 NA	- 50	983	20
			25	30	81	40	151	20	213	20	786 NA		984	30
			26	50	82	15	153	10	214	20	787	50	986	A
			27	NA 20	83	20	154	3	215	10	788 NA	_	987 1	1A 60
			31	45	87	20	155	2	210	30	789 NA	25	989	NA
			32	NA	89	90	157	3	218	10	791	10	990	A
			33	NA	90	20	158 D	NE (Waste)	219	20	792	30	500	10
			34	15	95	50	159	3	230	NA	793 NA	_	501	15
			35	20	100	10	161	40	231	6	794 NA	25 993/	nth	12
			37	40	102	50	162	30	233	20	796	35 993/	sth	30
			38	30	103	NA	163	30	234	NA	797	30	994	45
			39	25	104	30	164 167 N	15	239	15	798 NA	20	996	20
			40	40	114	50	168 N	A	243	NA	800	20 998/	nth	30
			43	30	119	25	170	10	249	20	876 NA	998/	sth	23
			44	15	120	50	171 N	A	251	NA	877 NA		999	10
			45	15	121	NA 30	172	70	252	50 NA	878 NA	_		
			40	20	122	30	1/3	00	233	INA .	675 NA			
	The process of validation, the checking process used, the comparison of model data to drill hole		del valida source mo	ition ste odel has	eps have l s been ste	been ta epped th	ken to vali hrough vis	date th ually in	e resouro sectiona	ce estima I and pla	ate; an view to ar	precia	te the	
	data, and use of reconciliation data if available.	composite grad the composite g	es used i grades an	n the e d a poi	stimate ar nt cloud c	nd the r	esultant b odel grade	lock gra es.	ades. Thi	s has als	so been carri	ed out	in 3D	with
		 Northing, Eastir against the mean 	ng and Ele an block e	evation estimate	swath plo es.	ots have	e been cor	istructe	d to eval	uate the	e composited	assay	means	÷
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are	e estimat	ed on a	dry basis	5.								

Section 3: Estima	tion and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The reported Mineral Resource is reported at varying cut-off grades, reflecting mining both open pit and underground methods.
		 KOTH open pit resource figures are based on a Measured, Indicated and Inferred pit optimisation shell. This shell was generated with a gold price of A\$2,700/oz using updated unit cost data and pit wall guidelines as at 30 June 2023.
		 Optimisations were conducted on a re-blocking or the Mineral Resource to a 10mN x 10mE x 5mZ model which represent suitable size to reflect current open pit mining practices.
		• The cut-off selected for reporting material within the pit shell is 0.4g/t Au cut-off and for material outside the pit shell is 1.0g/t Au cut-off. Material within the pit shell is primarily aimed to be mined by open pit methods and material outside to be mined using underground methods. However, a proportion of the underground reserve is within the open pit component i.e. located above the pit shell.
Mining factors or assumptionsAssumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is 	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding	The model has been developed to take into consideration for the development of large-scale open pit mining methods and for large scale stoping methods for evaluation purposes.
		• The mining methods for underground is a mix of narrow to large scale open stoping and air leg room and pillar. Ore development is conducted by Jumbo with an average height of 5.0m and width of 5.0m. The KOTH decline is 5.8m high x 5.0m wide.
		• For narrow vein mining additional drilling and on ore development will be required.
	 At grade control level model cell dimensions may need to be modified to suit more detailed geology and mine planning required for production. 	
Metallurgical factors	The basis for assumptions or predictions regarding	 King of the Hills ore is free milling with a gold recovery averaging 91.5%.
or assumptions	assumptions metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Ore is process on site with the newly commissioned 4.7Mtpa SAG Mill (CIP) which is increasing to 5.5Mtpa.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation.	 The project covers an area that has been previously impacted by mining. The tenement area includes existing ethnographic heritage sites. Red 5 and SBM have undertook extensive Aboriginal Heritage Surveys within the tenements and the management measures implemented are still in place.

Section 3: Estin	nation and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
	While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 The bulk densities, which were assigned to each domain in the resource model, are derived from over a thousand determinations which were carried out between 1994 and 2001 as part of routine Grade Control procedures. The bulk density values were determined from the previous reports by St Barbara Limited that were validated through recent bulk density measurements completed by Red5. In fresh rock density values ranges between 2.71g/cm3 and 2.80g/cm3
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique. Red 5 utilises the available underground diamond core, fresh rock, and tests selected samples using the water displacement technique.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	An average mean of densities collected for each weathering profile material, fresh, transitional and oxide
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as a combination of Measured, Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For the HGV domains the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153, the classification of Indicated Resources; an average sampling distance within 70m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153 the classification of Inferred Resources; an average sampling distance within 70m was required. For domain code 153 the classification of Inferred Resources; an average sampling distance within 45m and within the first two search passes was required. (Note the dolerite dykes are not material in terms of the resource but where they cross the HGV domains they result in a depletion of tonnage and grade within the HGVs.) For the Bulk Domain 998, the classification of Indicated Resources; is defined by search pass 1 (7.5m x 7.5m x 2.5m) which requires 1 hole (minimum of 2 samples) and search pass 2 (40m x 40m x 10m) which requires a minimum of 2 holes to be found. If 1 hole is found in search pass 2 (40m x 60m x 15m) where the average sample distance is less than 60m and the number of holes used to estimate a block is greater than 1. For all other bulk domains (993, 996, 994 and 997) the resource classification of Indicated Resource, is defined by search pass 2 (20m x 20m x 20m) requires 4 holes (minimum of 8 samples) and an average sampling distance between 0m and 30m. For the Inferred resource within x10m) which requires 4 holes (minimum of 8 samples) and an average sampling distance between 0m and 30m. For the Infer

Section 3: Estima	tion and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
		material has also been assigned based on search pass 3 (50m x 50m x 50m) which requires 2 holes (minimum of 4 samples) and having an average sampling distance of 0m to 60m.
	Whether appropriate account has been taken of all the relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	 All care has been taken to account for relevant factors influencing the mineral resource estimate. The historical reconciled production for pit mining between 1985 to 2004 was 28.4Mt @ 1.8g/t for 1.65Moz contained and for underground from 2010 to 30 June 2022 was 3.0Mt @ 4.0 g/t for 0.39Moz contained.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	• The geological model and the mineral resource estimate reflect the competent person's view of the deposit.
Audits or reviews	<i>The results of any audits or reviews of Mineral Resource estimates.</i>	 Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions.
		 As part of the funding process for the KOTH Final Feasibility Study (FFS) CSA acting as the Independent Technica Expert (ITE) conducted a review of the original KOTH resource model used to develop the reserves for the FFS. The FFS and model released in July 2021 was also independently reviewed and audited by Dr Spero Carras of Carras Mining Pty Ltd. Both parties had identified No fatal flaws. The KOTH grade control model (May 2022) resource update fundamentally has the same model parameters as those used for the original March 2020 resource model (refer to announcement dated 19 Mar 2020) and the June 2021 resource (refer to announcement dated 22 Jul 2021). Parameters modified to adjust to the additional geological data – drilling and mapping. This model has not been reviewed by CSA or Dr Spero Carras of Carras Mining Pty Ltd.
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	• The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model.

Section 3: Estima	ection 3: Estimation and Reporting of Mineral Resources				
Criteria	JORC Code Explanation	Commentary			
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	• The statements relate to a global estimate of tonnes and grade applicable to a bulk mining strategy.			

JORC CODE, 2012 EDITION – TABLE 1 REPORT: KOTH GOLD MINE –King of the Hills Resource 30 June 2022 model update (used for Pit design area of model.)

Γ

Section 1: Sampling	Section 1: Sampling Techniques and Data				
Criteria	JORC Code Explanation	Commentary			
Sampling Techniques <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry</i>	 Sampling activities conducted at King of the Hills by Red5 included underground diamond core drilling (DD), reverse circulation (RC) and underground face chip sampling. 				
	standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondor, or handhold XPE instruments, etc.)	• Sampling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drilling (DD) and face chip sampling.			
	These examples should not be taken as limiting the broad meaning of sampling.	• All sampling of diamond drill core (DD) from recent drilling by Red5 was carried out by halving the drill core lengthwise, using a powered diamond saw, and submitting predetermined lengths of half core for analysis.			
Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used		• Drilling completed by Red5 from November 2020 to July 2022, was sampled in accordance with the Company's standard sampling protocols, which are considered to be appropriate and of industry standard.			
	 Historical sampling of KUD, KHEX, KHGC, KSD, TADD and TARD series of diamond drill holes (DD), the nature and quality of which is considered to be done using Industry Standard practices and standard sampling protocols. 				
		• Sampling of historical drill core and core from recent drilling by Red5 was carried out in accordance with the Company's standard sampling protocols, which are considered to be appropriate and of industry standard.			
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	 Red 5 are satisfied that the historical and recent sampling of drill core, drill samples and face samples was carried out as per industry standard, and similar to, or in accordance with Red 5 sampling and QAQC procedures. 			
		• Red 5 inserted certified blank material into the sampling sequence immediately after samples that had been identified as potentially containing coarse gold. Barren flushes were also carried out during the sample preparation process, immediately after preparation of the suspected coarse gold bearing samples. The barren flush is also analysed for gold to identify and quantify any gold smearing in the sample preparation process.			
		• Certified Reference Material was regularly inserted into the sampling sequence after every 20 samples to monitor QAQC of the analytical process.			
		 All historic samples pre-August 2021 are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 50 g sub-sample for analysis by Fire Assay fusion / AAS determination techniques. 			
		Historically, core samples were taken on a 40g sub sample for analysis by FA/AAS.			
		• RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (1984- 2017).			

Section 1: Sampling Techniques and Data

	•	
Criteria	JORC Code Explanation	Commentary
		 All Red 5 samples post August 2021 are dried, crushed to nominal 2-3mm then split to produce a 500g sample for analysis by Photon Analysis for gold by MinAnalytical at their Kalgoorlie laboratory.
		 Samples for multielement are pulverise to 75µm from the gold sample course rejects. The pulp is then digested using either a 3 or the 4 acid digest for analysed using Inductively coupled plasma mass spectrometry (ICP-MS).
		 Note MinAnalytical was purchased by ALS in December 2021.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where	• All underground samples post August 2021 have been whole core sampled which are dried, crushed to nominal 2-3mm then split to produce a 500g sample for analysis by Photon Analysis for gold.
'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	• Pre-August 2021 Red 5 drill core sampling has been half cut and sampled downhole to a minimum of 0.2m and a maximum of 1.2m to provide a sample size between 0.3-5.4 kg, which is crushed and pulverised to produce a 50g charge for fire assay. The remaining half of the core is stored in the core farm for reference. For dedicated grade control samples whole core sampling was conducted.	
	sach as where there is coarse gold that has inherent	Coarse gold is only occasionally observed in drill core. Coarse gold is rarely seen in RC drill fines.
	 All historic RAB, RC, AC and DD and sampling is assumed to have been carried out to industry standard at that time. 	
	detailed information	• The majority of the recent historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis via fire assay and atomic absorption spectroscopy.
		 Historical analysis methods include fire assay, aqua regia and unknown methods.
		 All RC samples obtained by Red 5 from drill cuttings where split using the Rotary splitter attached to the drill rig and collected into numbered calico bags weighing between 2 – 3 kg.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	• Drilling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), air core (AC), and diamond drilling (DD).
		 Historical and current surface and underground diamond core drilling are carried out by drilling contractors, using standard wireline techniques. Standard double tube is used since the core is considered to be sufficiently competent to not require the use of triple tube. Diamond drill core diameter is NQ2 (Ø 50.5mm).
		 Current underground diamond drill core is orientated. Diamond core is pieced together in an angle iron cradle to form a consecutive string of core, where enough consecutive orientation marks that align an orientation line is marked on the core.
		 Current RC techniques for surface are based on Schramm drill rig fitted with a 5 ¼" diameter face- sampling RC bit.
		 For Open Pit grade control drilling is conducted using a track mounted Atlas Copco ROC L8 drill rig fitted with a 4 ½ diameter face-sampling RC bit. Note the Open Pit RCGC samples where not used in the estimation for this release.

Section 1: Sampling	Techniques and Data	
Criteria	JORC Code Explanation	Commentary
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	 Drill core sample recovery is calculated for each core run, by measuring and recording length of core retrieved divided by measured length of the core run drilled. Sample recoveries are calculated and recorded in the database.
		• Core recovery factors for core drilling are generally very high typically in excess of 95% recovery.
		• It has been noted that recoveries for historic diamond drilling were rarely less than 100% although recovery data has not been provided. Minor core loss was most likely due to drilling conditions and not ground conditions.
		Rock chip samples, taken by the geologist underground, do not have sample recovery issues.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	• Drill core recovery, and representativeness, is maximised by the driller continually adjusting rotation speed and torques, and mud mixes to suit the ground being drilled.
		• Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on the core blocks.
		• UG faces are sampled left to right/bottom to top across the face allowing a representative sample to be taken.
		• It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.
		• Diamond drilling has high recoveries, due to the competent nature of the ground, therefore loss of material is minimised. There is no apparent sample bias.
		Any historical relationship is not known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of	• 100% of drill core is logged geologically and geotechnically to a level of detail sufficient to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in	 Logging of diamond drill core has recorded lithology, mineralogy, texture, mineralisation, weathering, alteration and veining. Logging is qualitative and/or quantitative where appropriate.
	nature. Core (or costean, channel, etc) photography.	• There are no known core photographs available for historical KUD, KHEX, KHGC, KSD, TADD and TARD series of drill core.
		Core photographs are taken for all drill core drilled by Red5.
		Underground faces are photographed and mapped.
		 Qualitative and quantitative logging of historic data varies in its completeness.
		 Some historical diamond drilling has been geotechnically logged to provide data for geotechnical studies.
		Some historic diamond core photography has been preserved.
	The total length and percentage of the relevant intersections logged	All diamond drill holes are logged in their entirety and underground faces are mapped.

Section 1: Sampling T	Section 1: Sampling Techniques and Data				
Criteria	JORC Code Explanation	Commentary			
		Historic logging varies in its completeness.			
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 All diamond drill core samples were obtained by cutting the core in half, along the entire length of each sampling interval. Half core samples are collected over predetermined sampling intervals, from the same side, and submitted for analysis. 			
		• Drill core sample lengths can be variable in a mineralized zone, though usually no larger than 1.2 meters. Minimum sampling width is 0.2 metres. This enables the capture of assay data for narrow structures and localized grade variations.			
		• Drill core samples are taken according to a cut sheet compiled by the Geologist. Core samples are bagged in pre-numbered calico bags and submitted with a sample submission form.			
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Various sampling methods for historic RAB, AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split. 			
		Underground face samples are chip sampled from the wall using a hammer			
		It is unknown if wet sampling was carried out previously.			
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 The sample preparation of diamond drill core and face samples adheres to industry standard practice. It is conducted by a commercial certified laboratory and involves oven drying at 105°C, jaw crushing then total grinding using an LM5 to a grind size of 90% passing 75 microns. This procedure is industry standard and considered appropriate for the analysis of gold for Archaean lode gold systems. 			
		Best practice is assumed at the time of historic sampling			
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of	All sub-sampling activities are carried out by commercial certified laboratory and are considered to be appropriate.			
	samples.	• Industry standard practice is assumed at the time of historic RAB, RC, AC and DD sampling.			
	Measures taken to ensure that the sampling is	Some duplicate sampling was performed on historic RAB, RC, AC and DD drilling.			
	representative of the in situ material collected, including for instance results for field	No duplicates have been taken of UG diamond core.			
	duplicate/second half sampling.	Field duplicates are taken routinely underground when sampling the ore structures.			
		 For diamond drill core the remaining half core, portion not sampled, is retained in core trays for future reference. There is sufficient drilling data and underground mapping and sampling data to satisfy Red 5 that the sampling is representative of the in-situ material collected 			
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of drilling data and mine production data supports the appropriateness of sample sizes.			
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Pre-August 2021 Primary assaying for gold for DD and Face samples is by fire assay fusion with AAS finish to determine gold content. This method is considered one of the most suitable for determining gold concentrations in rock and is a total digest method.			
		• Screen fire assays are carried out for all assays returning a grade >100g/t for drilling conducted by Red 5. In general, the screen fire assays are higher than normal fire assay. The procedure			

Criteria JORC Code Explanation Commentary involves passing the sample through a Tyler 200 mesh stainless steel screen. The +75 micron material is free assay to extinction. Two samples are taken from the -75 micron and fire assayed. In both instances an AX5 finish is used. A weighted grade average is produced. The procedure is referenced as Au-SCR22. • Documentation regarding more historical holes and their sample analyses are not well documented. Historical holes and their sample analyses are not well documented. Historical holes and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical block and their sample analyses are not well documented. Historical assay results from assay is when compared to Leachwell using a 200g pulp and a 2 hour leach. • Historic work by Mount Edon Mines (2000, AusIMM 4P International Mining Geology Conference) showed an undersynalution of 8% for fire assaying when compared to Leachwell using a 200g pulp and a 2 hour leach. • Historic work by Mount Edon Mines (2000, AusIMM 4P International Mining Geology Conference) showed an undersynalution of 8% for for accossidered total. • Acceptable levels of accuracy and precision were established prior to accepting the sample data. • The QAQC procedures and results show acceptable levels of accuracy and precision were established. • MinAn	Section 1: Sampling	Techniques and Data	
involves passing through a Tyler 200 mesh stainless steel screen. The +75 micron matteria sasped. involves passing through a Tyler 200 mesh stainless steel screen. The +75 micron and fre assayd. in both instances an AS finish is used. A weighted grade average is produced. The procedure is referenced as Au-SCR22. Documentation regarding more historical holes and their sample analyses are not weil documented. Historic sampling more historical holes and their sample analyses are not weil documented. Historic sampling includes fire assay, aqua regia and unknown methods. Umpre analysis were understaken at Independent Kasy Laboratories (IAL) for selected samples comprising a 100-sample batch. Results show a reasonable correlation with the original samples, with differences largely attributed to nugget effect. Historic work by Mount Edon Mines (2000, AustIM 4 th International Mining Geology Conference) showed an undervaluation of 8% for fire assay ing when compared to Leachwell using a 200g pulp and a 2 hour leach. Post August 2021 all gold assays for both DD and RC have been done using the Photon Anayliser technique. The quality of the assay is within industry standards. All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAC procedures and results show acceptable levels of accuracy and precision were established. NinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. Rotards, blank, duplicates,	Criteria	JORC Code Explanation	Commentary
 Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods. Umpire analysis were undertaken at Independent Assay Laboratories (IAL) for selected samples comprising a 100-sample batch. Results show a reasonable correlation with the original samples, with differences largely attributed to nugget effect. Historic work by Mount Edon Mires (2000, AusIMM 4^m International Mining Geology Conference) showed an undervaluation of 8% for fire assaying when compared to Leachwell using a 200g pulp and a 2 hour leach. Post August 2011 all gold assays for both DD and RC have been done using the Photon Anayliser technique. The quality of the assay is within industry standards. All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established. MinAnalysis includue law National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. No geophysical tools spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model/ reading instrument make and model/ reading instruments neeks of accuracy and precision special tools have been established. No geophysical tools have been utilised to determine assay results at the King of the Hills project (i.e. lack of bias) and precision have been estables and analysis includues of accuracy and precision for all stages of the sampling analysis includues of accuracy and precision for all stages of the sampling acceptable levels of accuracy and precision were established. No geophysical tools have been utilised to determine assay results at the King of the Hills project intervation, etc. QC samples were routinely inserted into the sampling sequ			involves passing the sample through a Tyler 200 mesh stainless steel screen. The +75 micron material is fire assayed to extinction. Two samples are taken from the -75 micron and fire assayed. In both instances an AAS finish is used. A weighted grade average is produced. The procedure is referenced as Au-SCR22.
 Historic work by Mount Edon Mines (2000, AusIMM 4th International Mining Geology Conference) showed an undervaluation of 8% for fire assaying when compared to Leachwell using a 200g pulp and a 2 hour leach. Post August 2021 all gold assays for both DD and RC have been done using the Photon Anayliser technique. The quality of the assays is within industry standards. All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. 			• Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods. Umpire analysis were undertaken at Independent Assay Laboratories (IAL) for selected samples comprising a 100-sample batch. Results show a reasonable correlation with the original samples, with differences largely attributed to nugget effect.
 Post August 2021 all gold assays for both DD and RC have been done using the Photon Anayliser technique. The quality of the assays is within industry standards. All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. No geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project instruments, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			 Historic work by Mount Edon Mines (2000, AusIMM 4th International Mining Geology Conference) showed an undervaluation of 8% for fire assaying when compared to Leachwell using a 200g pulp and a 2 hour leach.
 The quality of the assays is within industry standards. All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project indetermine derivation, etc. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and precision have been established. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			Post August 2021 all gold assays for both DD and RC have been done using the Photon Anayliser technique.
 All the recent and historical assay results for gold are considered total. Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project of accuracy and whether acceptable levels of accuracy is and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			The quality of the assays is within industry standards.
 Acceptable levels of accuracy and precision were established prior to accepting the sample data. The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project is standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy is and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			• All the recent and historical assay results for gold are considered total.
 The QAQC procedures and results show acceptable levels of accuracy and precision were established. MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy and precision have been established. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			• Acceptable levels of accuracy and precision were established prior to accepting the sample data.
 MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. No geophysical tools have been utilised to determine assay results at the King of the Hills project indervation, etc. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			The QAQC procedures and results show acceptable levels of accuracy and precision were established.
 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 			 MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements.
 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 		For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised to determine assay results at the King of the Hills project
 Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory. 		Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	 QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process.
		established.	• Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory.

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
		 Certified blank material is inserted under the control of the geologist and are inserted at a minimum of one per batch. Barren quartz flushes are inserted between expected mineralised sample interval(s) when pulverising. 	
		 QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. 	
		 QAQC data validation is routinely completed and demonstrates sufficient levels of accuracy and precision. 	
		 Pre-August 2021 sample preparation checks for fineness are carried out to ensure a grind size of 90% passing 75 microns. 	
		 Post-August 2021 assays are course crushed to nominal 2-3mm and stored in 500g jars. These are check by the laboratory before analysing. 	
		• The laboratory performs several internal processes including standards, blanks, repeats and checks.	
		Industry standard practice is assumed for previous holders.	
		Some historic QAQC data is stored in the database but not reviewed.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Core samples with significant intersections are typically reviewed by Senior Geological personnel to confirm the results.	
	The use of twinned holes.	 No specific twinned holes were drilled, however due to the drilling density several intersections are often in close proximity. 	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	 Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. 	
		 All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration and structural characteristics of core) is captured directly by customised digital logging tools with stringent validation and data entry constraints. Geologists load data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. 	
		 Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server. 	
	Discuss any adjustment to assay data.	 The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. 	

Section 1: Sampling	Techniques and Data	
Criteria	IORC Code Explanation	Commentary
		 No adjustments have been made to assay data. First gold assay is utilised for grade review. Re- assays carried out due to failed QAQC will replace original results, though both are stored in the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches,	 Diamond drill hole collars are marked out pre-drilling and picked up by company surveyors using a total station at the completion of drilling, with an expected accuracy of +/-2mm.
	mine workings and other locations used in Mineral Resource estimation.	 Underground faces are located using a Leica D5 disto with and accuracy of +/- 1mm from a known survey point.
		 Downhole surveys are carried out at regular intervals using a single shot camera, initially at 15m and then 30m thereafter. A final downhole survey is completed using an electronic downhole survey tool (Deviflex Rapid), both in and out runs are recorded.
		 Historic drilling was located using mine surveyors and standard survey equipment; more recent surface drilling has been surveyed using a DGPS system.
		• The majority of downhole surveys for historic RAB, RC, AC and DD drilling are estimates only. More recent (post 1990) drilling has been surveyed with downhole survey tools at regular intervals including DEMS, gyroscope and camera.
		 Underground voids are surveyed by mine surveyors. The survey control on these voids is considered adequate to support the drill and mine planning.
	Specification of the grid system used.	• A local grid system (King of the Hills) is used. A two point transformation to MGA_GDA94 zone 51 is tabulated below:
		KOTHEast KOTHNorth RL MGAEast MGANorth RL Point 1 49823.541 9992.582 0 320153.794 6826726.962 0 Point 2 50740.947 10246.724 0 320868.033 6827356.243 0
		Mine Grid elevation data is +4897.27m relative to Australian Height Datum
		Historic data is converted to King of the Hills local grid on export from the database.
	Quality and adequacy of topographic control.	• DGPS survey has been used to establish a topographic surface and aerial/drone survey. Open pit drone survey is done on regular bases.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The nominal drill spacing is variable ranging from less than 20m x 20m with some areas of the deposit at 80m x 80m or greater. This spacing includes data that has been verified from previous exploration activities on the project. Note underground grade control drilling can be down to nominal 15m x 15m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Underground level development is 15-25 meters between levels and face sampling is <1m to 10m spacing. This close spaced production data provides insights into the geological and grade continuity and forms the basis of exploration drill spacing.

Section 1: Sampling Techniques and Data				
Criteria	JORC Code Explanation	Commentary		
		 The Competent Person considers the data reported to be sufficient to establish the degree of geological and grade continuity appropriate for future Mineral Resource classification categories adopted for KOTH. 		
Orientation of data in relation to geological	Whether sample compositing has been applied.	 Diamond drill core and faces are sampled to geological intervals; compositing is not applied until the estimation stage. 		
structure		 Reverse circulation drilling are sampled to 1m composite lengths. 		
		• Samples were composited in the estimation stage to two fundamental lengths; 1m and 2m.		
		• The 1m composite length has been used in the evaluation of the High Grade Vein (HGV) domains and the 2m composite length has been used to evaluate the bulk domains.		
		• Some historic RAB and AC drilling was sampled with 3-4m composite samples. Anomalous zones were resampled at 1m intervals in some cases; it is unknown at what threshold this occurred.		
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Sampling of the (HGV) domains has been conducted in most cases perpendicular to the lode orientations where the mineralisation controls are well understood. The space between the HGV consists of stockwork mineralisation (bulk domain) where the predominant mineralisation trend is orthogonal to the current drilling orientation. It is possible, where mineralisation controls are not well understood and the interpretation of the stockwork mineralisation aligns with drilling, mineralisation in this deposit has not been optimally intersected. 		
		Majority of the Open Pit drilling is oriented sub perpendicular to the mineralisation.		
If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling is designed to intersect ore structures as close to orthogonal as practicable. This is not always achievable from underground development. 			
	 Cursory reconciliations carried out during mining operations have not identified any apparent sample bias having been introduced because of the relationship between the orientation of the drilling and that of the higher-grade mineralised structures. 			
		 There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures. 		
Sample security	The measures taken to ensure sample security.	 Recent samples are prepared on site under supervision of geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into larger secured bags and delivered to the laboratory by a transport company. All recent KOTH samples manage by Red 5 Limited are submitted to an independent certified laboratory's in Kalgoorlie for analysis. 		
		 KOTH is a remote site and the number of external visitors is minimal. The deposit is known to contain visible gold, and while this renders the core susceptible to theft, the risk of sample tampering is considered very low due to the policing by Company personnel at all stages from drilling through to storage at the core yard, sampling and delivery to the laboratory 		
		 Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access. 		

-

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 A series of written standard procedures exists for sampling and core cutting at KOTH. Periodic routine visits to drill rigs and the core farm are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse findings, and any minor deficiencies were noted, and staff notified, with remedial training if required.
		 No external audits or reviews have been conducted for the purposes of this report.
		 Previous resource estimations for the KOTH resource have been independently reviewed by third parties.

Section 2: Reporting of	Exploration Results
-------------------------	---------------------

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure statusType, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park	 The King of the Hill pit and near mine exploration are located on M37/67, M37/76, M37/90, M37/201 and M37/248 which expire between 2028 and 2031. All mining leases have a 21 year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited. 	
	and environmental settings.	• The mining leases are subject to a 1.5% 'IRC' royalty, now owned by Royal Gold Inc.
		• All production is subject to a Western Australian state government 'NSR' royalty of 2.5%.
		• All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF.
		There are currently no native title claims applied for, or determined, over the mining leases.
		 An 'Other Heritage Place' (aboriginal heritage place ID: 1741), referred to as the "Lake Raeside/Sullivan Creek" site, is located within M37/90.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and the licence to operate already exists. There are no known impediments to obtaining additional licences to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The King of the Hills prospect was mined sporadically from 1898-1918. Modern exploration in the Leonora area was triggered by the discovery of the Habour Lights and Tower Hill prospects in the early 1980s, with regional mapping indicating the King of the Hills prospect area was worthy of further investigation.
		 Various companies (Esso, Ananconda, BP Minerals. Kulim) carried out sampling, mapping and drilling activities delineating gold mineralisation. Kulim mined two small open pits in JV with Sons of Gwalia during 1986 and 1987. Arboynne took over Kulim's interest and outlined a new resource

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary while Mount Edon carried out exploration on the surrounding tenements. Mining commenced but problems lead to Mount Edon Mines acquiring the whole project area from Kulim, leading to the integration of the King of the Hills, KOTH West and KOTH Extended into the Tarmoola Project. Pacmin bought out Mount Edon and were subsequently taken over by Sons of Gwalia.
		 St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the name given to the underground mine, which St Barbara developed beneath the Tarmoola pit. St Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine.
		 In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen Mineral Holdings Limited.
Geology	Deposit type, geological setting and style of mineralisation.	 The KOTH mineralisation is considered to be part of an Archean Orogenic gold deposit with many similar characteristics to other gold deposits within the Eastern Goldfields of the Yilgarn Craton.
		 Gold mineralisation is associated with sheeted and stockwork quartz vein sets within a hosting granodiorite stock and pervasively carbonate altered ultramafic rocks. Mineralisation is thought to have occurred within a brittle/ductile shear zone with the main thrust shear zone forming the primary conduit for the mineralising fluids. Pre-existing quartz veining and brittle fracturing of the granite created a network of second order conduits for mineralising fluids.
		• Brittle fracturing along the granodiorite contact generated radial tension veins, perpendicular to the orientation of the granodiorite, and zones of quartz stockwork. These stockwork zones are seen in both the granodiorite and ultramafic units and contain mineralisation outside the modelled continuous vein system (High Grade Veins).
		 Gold appears as free particles (coarse gold) or associated with traces of base metals sulphides (galena, chalcopyrite, pyrite) intergrown within quartz along late stage fractures.
Drillhole information	A summary of all information material to the understanding of the exploration results including a	• Drillhole collar locations, azimuth and drill hole dip and significant assays are reported in Appendix 1 attached to the ASX announcement for which this Table 1 Report accompanies.
	tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of	Future drill hole data will be periodically released or when a result materially changes the economic value of the project.

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Commentary	
	the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Reporting of significant intercepts are based on weighted average gold grades, using a low cut-off grade of 0.3g/t Au. No cutting of high grades has been applied to the significant intercept reported. 	
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade	 Compositing of intercepts is constrained by including consecutive down-hole lengths of maximum 4 metres at grades <0.3g/ Au. 	
results, the pro should be state	results, the procedure used for such aggregation should be stated and some typical examples of such	 Minimum reporting length of 6m and grade >1.2g/t or a minimum contained gold >12 gram*meter accumulation has been used. 	
	aggregations should be shown in detail.	Note due to the type of mineralization high grade values are common over narrow intervals.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used.	
Relationship between	These relationships are particularly important in the	No true thickness calculations have been made.	
mineralisation widths and intercept lengths	reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be	All reported down hole intersections are documented as down hole width only. True width not known.	
	reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• The KOTH mineralisation envelope is intersected approximately orthogonal to the orientation of the mineralised zone, or sub-parallel to the contact between the granodiorite and ultramafic. Due to underground access limitations and the variability of orientation of the quartz veins and quartz vein stock-works, drilling orientation is not necessarily optimal.	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Longsection below shows underground drill holes included in resource model (KHRD Series drillholes) completed since the June 2021 Resource model. 	

Section 2: Reporting of Exploration Results				
Criteria	JORC Code Explanation	Commentary		
		- 550 Eev - 550 Eev - 550 Eev - Existing Samooa Pi		
		-500 Eer-		
		 Longsection below shows underground drill holes included in resource model completed since the June 2021 Resource model, with gold legend displayed. 		
		- 500 EW 500 EW- Exating Temoria Pi		
		-500 Eev 500 Eev 500 Eev		
		I r0 I r0 I r0 I r00 I		
		 Longsection below shows Measure, Indicate and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for HGV and IDD Domains with gold legend displayed 		

ection 2: Rep	orting of Exploration Results				
riteria	JORC Code Explanation	Commentary			
		-9500 N	- 10000 N	- 10500 N	- 11000 N
		- 5500 Elev			5500 Elev
			Existing Tarmoola Pit		
		- 5000 Elev Cold perm) (0.0.16) (0.15.0.4] (0.4.0.7) (0.4.0.7) (0.4.7.1]			5000 Elev-
		1.5 [5.5:ELING] Vertical Plane Projection (HGV and IDD Domains) Scale 1.7500.0	1.7500 Z 2.200 300 00 1	- 10600 N	2 4500 Elev –
		Longsection below she 0.4g/t Au. Model disp	ows Measure, Indicate	e and Inferred resour ints) for Bulk Domain	ce model at a cut-off grade is with gold legend displayed
		- 5500 Elev	z	z	Z 5500 Elev
		- 5000 Elev	Existing Tarmoola Pit		5000 Elev
		Gold (ppm) [ASSENT] [0, 16] [0, 16, 04] [0, 16, 0, 7] [0, 4, 0, 7] [0, 7, 1] [1, 5] [1, 5] [5, CEL ING] Vertical Plane Projection (Bulk Domains) 1 Scale [Diffing by Red5 Since 9m] 1	1.7500 N 2200 3000 P 1	N 00501-	4500 Elev
		 Longsection below she 0.4g/t Au. Model disp legend displayed 	ows Measure, Indicate	e and Inferred resour ints) for HGV and ID	ce model at a cut-off grade D Domains with Resource C

JORC Code Explanation	Commentary			
		- 10000 N	- 10500 N	- 11000 N
	- 5500 Elev			5500 Elev
		Existing Tarmoola Pit		
	-5000 Elev			5000 Elev -
	Assure Calactory [1] [2] [3] Vertical Plane Projection (HGV and IDD Domains) Scale Dirling by Red5 Since 9th 1.75500. November 2020	1.7500 S 200 3000 E	N 00901 -	N 4500 Elev –
	 Longsection below she 0.4g/t Au. Model disp displayed 	ows Measure, Indicat layed a centroids (po	e and Inferred resoun bints) for Bulk Domair	rce model at a cut-off on swith Resource Category
	 Longsection below sho 0.4g/t Au. Model disp displayed 	ows Measure, Indicat played a centroids (po	e and Inferred resoun pints) for Bulk Domain	rce model at a cut-off on swith Resource Categ
	Longsection below shu 0.4g/t Au. Model disp displayed	bws Measure, Indicat played a centroids (po	e and Inferred resoun pints) for Bulk Domain	rce model at a cut-off (ns with Resource Categ
	• Longsection below shu 0.4g/t Au. Model disp displayed	bows Measure, Indicat blayed a centroids (po	e and Inferred resour pints) for Bulk Domain	rce model at a cut-off on swith Resource Catego
	Longsection below sho 0.4g/t Au. Model disp displayed	bows Measure, Indicat blayed a centroids (po g Existing Tarmoola Pit	e and Inferred resources of the second	rce model at a cut-off on the source Category of the source category
	Longsection below sho 0.4g/t Au. Model disp displayed	evers Measure, Indicate played a centroids (por existing Tarmola Pit	e and Inferred resources for Bulk Domain	rce model at a cut-off g ns with Resource Catego 5500 Ew-

Section 2: Reporting of Exploration Results				
Criteria	JORC Code Explanation	Commentary		
		Commentary If the second se		
		Program participant program		

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		 Plan below shows Measure, Indicate and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for HGV and IDD Domains with gold legend displayed
		 Plan below shows Measure, Indicate and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for Bulk Domains with gold legend displayed

Section 2: Reporting of Exploration Results		
Criteria JORC Code Explanation	Commentary I define the second secon	

Section 2: Reporting of Exploration Results						
Criteria	IORC Code Explanation	Commentary				
		 Plan below shows Measure, Indicate and Inferred resource model at a cut-off grade of 0.4g/t Au. Model displayed a centroids (points) for Bulk Domains with Resource Category legend displayed Image: Commentative of the com				
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant resulted have been reported in Table 2. KoTH significant assays (relative to the intersection criteria) including those results where no significant intercept was recorded. Weighted average composited intervals have been tabulated and included within the main body of the ASX release for which this Table 1 Report accompanies. 				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other exploration data that may have been collected is considered material to this announcement. 				
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is continually reviewing the resource models and geology interpretations. Drilling is currently being planned to test the next one to two-year mine plan for underground, stope derisking for mine planning and resource extensions. No diagrams have been included in this report to show the proposed drilling plans for the KOTH resource. 				

Г

Section 3: Estimation and Reporting of Mineral Resources						
Criteria	JORC Code Explanation	Commentary				
Database Integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture. 				
		 Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. 				
		 The Database Administrator imports assay and survey data (downhole and collar) from raw csv files. 				
		 Data from previous owners was taken to be correct and valid. 				
	Data validation procedures used.	 The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. 				
		 Validation of data included visual checks of hole traces, analytical and geological data. 				
Site Visits	<i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>	• The competent person is an employee of Red 5 and conducts regular site visits to the King of the Hill project. The Competent person has an appreciation of the King of the Hills deposit geology and the historical mining activities that occurred there.				
Geological Interpretation	<i>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</i>	• The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed and validated the historical interpretation of the King of the Hills deposit. This knowledge is based on extensive geological logging of drill core, RC chips, detailed open pit mapping and assay data. Results of current mining have also been used. Mineralisation of HGV domains are defined by quartz veining, occurrence of sulphides (galena, chalcopyrite, and pyrite) and elevated gold grade (>0.5 g/t). Mineralisation of stockwork zones (bulk domains) are defined by stockwork quartz veining along the contact of the granodiorite/ultramafic and captures all drill intercepts in the deposit.				
	Nature of the data used and any assumptions made.	 The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration. 				
		 Fourteen HGV domains and five bulk domains were updated while ten HGV domains have been added based on additional information (drillhole and face data), the remaining 75 domains within the deposit were not updated from the June 2021 Resource Model which includes 67 domains from Saracens latest review completed in October 2017 and assumed correct. 				
		No domains were removed from the Resource.				

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
		 Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built.
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	 Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.
	The use of geology in guiding and controlling the Mineral Resource estimation.	• The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.
	<i>The factors affecting continuity both of grade and geology.</i>	 The main factors affecting continuity are; Structurally offset quartz veining within the hosting granodiorite stock and the pervasively altered ultramafic rocks.
		 Proximity to the granodiorite as mineralisation extends into the altered ultramafic rocks.
		 Potassic alteration in the form of sericite is occasionally associated with mineralisation within the granite whilst fuchsite is often present in mineralised parts of the ultramafic rocks.
		 Orientation of tension vein arrays within the hosting granodiorite. These tension vein arrays within the central and southern portion of the mine may not necessarily be as continuous as modelled given the thickness of these veins, variability and fact most of these veins are modelled using RC data.
		 The existence of these tension veins has been validated by current underground development and recent drilling and assay of historical information.
		 These factors were used to aid the construction of the mineralisation domains.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The northern section of the mineralised zone (also known as part of the Western Flank) strikes 30 degrees west of true north over a distance of 700m and plunges to the southwest. Individual lodes dip east at 35 to 45 degrees. Eastern Flank mineralisation strikes 30 degrees east of true north over a distance of 700m and is sub vertical. Stockwork mineralisation runs along the contact of the granodiorite/ultramafic contact and penetrates up to and over 100 to 200m inter the granodiorite. The average strike of the eastern edge of the granodiorite runs 30 degrees east of true north over a distance of 4km and is vertical.
		 In summary the KOTH mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is drilled down to a depth of approximately 590m and the southern half mineralisation has been drilled to approximately 250m below surface.
		 Mineralisation is still open down dip on the eastern contact and down plunge along the northern contact.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including	 117 domains (including HGV, Bulk Domains, Intermediate Dolerite Dykes (IDD)) were estimated using ordinary kriging and

eria	JORC Code Explanation	Comme	ntary												
	treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	•	49 domain blocks size geometry the resou	ns estir e. Sear , with t rce mo	nated ch pai hree s del ar	using ramete search e as fo	Inversers are passe plows;	se Dista e consis es comp	ance to t tent wit pleted: E	the pow h geolo Example	ver of 2 gical ol s of se	on 10m oservatio arch and	E x 10n on of the I variog	nN x 10 e miner ram pa)mRL p alisatio ramete
										Search E	llipse				
		DOMAIN	DOM_CODE	DOM_GP	STRIKE	DIP	DISTANCE1	DISTANCE	1 DISTANCE2	DISTANCE2 DIRECTION	DISTANCE	3 DISTANCE3	SV2 RATIO	SV3 RATIO	Min Samp (SV3)
		Transported	500	500	90°	0°	10	90° (East)) 10	0° (North)	2.5	Z	2	4	2
		Oxide	501	501	90°	0°	10	90° (East)) 10	0° (North)	2.5	Z	2	4	2
		BLUK	998	998	165°	35° West	7.5	Strike	75	Dip	2.5	Width	4 40x40x10	60x60x15	2
		WASTE	999	999	165°	35° West	10	Strike	10	Dip	2.5	Width	4	6	2
		BK_SD1U	997	997	90°	0°	10	90° (East)) 10	0° (North)	10	Z	2	5	4
		BK_SD1G	994	994	90°	0°	10	90° (East)) 10	0° (North)	10	Z	2	5	4
		BK_SD20	996	996	90*	0°	10	90° (East)) 10	0° (North)	10	7	2	5	4
		REGAL	13	13	90°	0°	30	90° (East)) 60	0° (North)	60	Z	2	7	1
		RIVERRUN/						,,		, .,					
		THEON/	1/2/163/164	1	90°	0°	30	90° (East)) 60	0° (North)	10	Z	2	7	4
		RODRIK/ AGGO	20 (2 damain)	20	200	08	20	008.45		08 (81- 112	10	7	2	7	
		Kingdom Lower	20 (3 domains)	20	90-	0-	30	90° (East)) 60	0° (North)	10	2	2	/	1
		Osha/Osha01	3/4	3	90°	0°	30	90° (East)) 60	0° (North)	10	2	2	7	4
		Kaiser1	10	10	90°	0°	30	90° (East)) 60	0° (North)	10	7	2	7	4
		Regal Splay	12	12	90°	0°	30	90° (East)) 60	0° (North)	10	Z	2	7	4
		Imperial_N	14 (13 domains)	14	90°	0°	30	90° (East)) 60	0° (North)	10	Z	2	7	1
		Kingdom_U	19	19	90°	0°	30	90° (East)) 60	0° (North)	10	Z	2	7	4
		Whitewalker	138 (3 domains)	138	90*	0*	30	90° (East)) 60	0° (North)	10	7	2	7	4
		IDD 13 NTH	150	150	90°	0*	30	90° (East)) 60	0° (North)	10	Z	2	7	1
			28 domains	201	90°	0*	30	90° (East)) 60	0° (North)	10	Z	2	7	4
			19 domains	202	90°	0*	30	90° (East)) 60	0° (North)	10	Z	2	7	4
			6 domains	203	90°	0*	30	90° (East)) 60	0° (North)	10	Z	2	7	4
			10 domains	204	90*	0*	30	90° (East)) 60	0° (North)	10	7	2	7	4
			17 domains	207	90*	0*	30	90" (East)) 60	0° (North)	10	Z	2	7	4
					Va	riogram Ellipse	•			Structure 1 (X	YZ)		Str	ucture 2 (XYZ)	
		DOMAIN	DOM_CODE	DOM_GP	STRIKE	DIP (ti	PLUNGE ilts ellipse)	NUGGET	Major	Semi-Major	Minor	Sill M	ajor Semi	-Major M	inor Sill
		Transported	500	500	170°	25° East 1	16° North	0.5	17m (on DIP)	6m (on STRIKE)	6m (Width)	0.175 33m (on DIP) 13m (o	n STRIKE) 13m	Width) 0.32
		Oxide	501	501	170°	25° East 1	16° North	0.5	17m (on DIP)	6m (on STRIKE)	6m (Width)	0.175 33m (on DIP) 13m (o	n STRIKE) 13m	Width) 0.32
		BULK	998	998	170*	25 East 1 25* East 1	16 North	0.5	17m (on DIP)	6m (on STRIKE)	6m (Width)	0.175 33m	on DIP) 13m (o	n STRIKE) 13m	Width) 0.32 Width) 0.32
		WASTE	999	999	170°	25° East 1	16° North	0.5	17m (on DIP)	6m (on STRIKE)	6m (Width)	0.175 33m	on DIP) 13m (o	n STRIKE) 13m	Width) 0.3
		BK_SD1U	997	997	360°	70° E	13.5° N	0.4	15	12	10	0.4	10	35	20 0.2
		BK_SD1G	994	994	298"	10° NW	80° NE 10° N	0.6	10	10	5	0.25	30	20	40 0.1
		BK_SD2G	993	993	240*	46° W	22° NE	0.6	15	10	10	0.3	10	30	15 0.1
		REGAL	13	13	234°	7.5° NW	50° SW	0.4	15	10	5	0.4	10	25	5 0.2
		RIVERRUN/	4/2/452/454		750	008.0	100.00								
		RODRIK/ AGGO	1/2/163/164	1	/5	80 5	10° W	0.6	30	10	12	0.4			
		Kingdom Lower	20 (3 domains)	20	110°	10° NE	10° NW	0.5	25	30	5	0.5			
		Orba/Orba01	2/4	2	245*	10° W	25° S	0.5	30	10	6	0.5			
		Kaiser	9	9	330*	10 W	5° S	0.4	20	10	5	0.6			
		Kaiser1	10	10	75°	15°N	15° W	0.4	40	20	5	0.6			
		Regal Splay	12	12	340*	25°W	25° S	0.5	20	30	5	0.5	10		
		Imperial_N Kingdom_U	14 (13 domains)	14	211"	41'NW 20°W	30' SW	0.35	25	35	5	0.45	iu III	20	5 0.2
		Whitewalker	138 (3 domains)	138	185*	20° E	20° N	0.3	40	40	10	0.7			
		IDD_12_NTH	150	150	325°	15° W	55° S	0.1	30	11	5	0.256	54	25	5 0.64
		IDD_13_NTH	151	151	110*	15° E	5° N	0.1	3	7	5	0.064	6	12	5 0.83
			28 domains	201	350" 255°	10° S	55° S	0.6	10	15	10	0.4			
			6 domains	203	185*	10° E	51° N	0.3	40	27	5	0.002	30	39	5 0.65
			10 domains	204	30°	35° NW	50° S	0.3	16	7	5	0.05	32	14	12 0.6
			5 domains	205	120°	5° E	10° N	0.1	32	19	5	0.035 1	01	36	5 0.86
						AT 101303 1	ALC: N	11.44	10.1			11.0			

Section 3: Estimatio	n and Reporting of Mineral Resources	
Criteria	JORC Code Explanation The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	 Commentary Ordinary Kriging (OK), Inverse Distance Squared (ID2) and Nearest Neighbour (NN) were completed on all domains as validation of the OK grades. The results were found to be satisfactory.
	The assumptions made regarding recovery of by- products.	No assumptions have been made with respect to the recovery of by-products.
	Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulfur for acid mine drainage characterisation).	There has been no estimate at this point of deleterious elements.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	• The resource used the parent block size of 10m(X) by 10m(Y) by 10m(Z). These were deemed appropriate for the majority of the resource, where the nominal drill spacing is in the order of 20m x 20m.
		 Parent blocks in the HGV domains were sub-celled to 0.625m(X) by 0.625m(Y) by 0.625m(Z) and in the Bulk Domain were sub-celled to 1.25m(X) by 1.25m (Y) by 1.25m (Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity.
		Three search estimation runs are used.
	Any assumptions behind modelling of selective mining units.	• The model has been sub-celled to reflect the narrow veining with the updated domains using the string method modelled to a minimum width of 1m and using leapfrog modelled to a minimum of 0.2m. Legacy wireframes are still utilised in this resource estimate and have been modelled based on lithology, ore control, and not a minimum mining width.
	Any assumptions about correlation between variables.	No assumptions have been made regarding correlation between variables.
	Description of how the geological interpretation was used to control the resource estimates.	The geological interpretation strongly correlates with the mineralised domains. Specifically, where the mineralised domain corresponds with quartz veining and data density (bulk domain). HGV wireframe boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced. Note the accuracies for majority of the HGV at mine scale can vary significantly due to the short strike length of the mineralisation including up and down dip. The purpose of these hard HGV domains are to identify the mineralised corridor. Further infill drilling and mine development is required to accurately position these areas for high grade narrow stoping/mining techniques. For bulk mining (both open pit and underground) the Mineral Resource estimate requires reblocking to suitable dimension to simulate the planned dilution. When the lithology, veining, was less than one meter the updated domains were modelled to a one-meter minimum mining width, these hard lithology boundaries were not honoured in this instance. Bulk wireframe boundaries capture all drill intercepts within the deposit with sub-domains generated in areas of increase data-density improving geological confidence on the nature on mineralisation, stockwork, no hard boundaries enforced.

Section 3: Estimation and Reporting of Mineral Resources	
--	--

Criteria	JORC Code Explanation	Comme	ntary								
	Discussion of basis for using or not using grade cutting or capping.	•	Top-cuts we grade samp	re emplo es existe	yed to redu d.	ce the ris	k of overest	imating ir	n the local a	areas whe	re a few high-
			Domain Code	High Grade Cut (g/t)	Domain Code	High Grade Cut (g/t)	Domain Code	High Grade Cut (g/t)	Domain Code	High Grade Cut (g/t)	
			1	30	47	100	101	100	161	100	
			2	30	48	100	102	100	162	30	
			3	25	49	100	103	100	163	30	
			5	100	51	50	104	100	167	100	
			6	100	52	100	114	-	168	100	
			7	70	53	100	115	-	169	100	
			8	100	54	100	118	50	170	100	
			9	100	55	100	119	80	171	90	
			10	60	56	20	120	100	172	100	
			12		58	45	121	60	175	100	
			13	70	60	100	123	60	175	100	
			14	90	61	45	125	80	177	100	
			15	20	62	100	127	100	178	60	
			16	80	63	20	129	100	179	60	
			18	80	64	12	130	100	180	90	
			19	999	65	100	133	60	181	90	
			20		67	5	135	60	182	90	
			22	100	68	100	136	60	184	90	
			23	45	69	30	137	60	185	90	
			24	100	70	100	138	100	186	90	
			25	100	71	30	139		187	90	
			28	40	72	100	140	60	188	60	
			29	60	73	100	141	60	233	100	
			31	50	75	-	143	60	333	20	
			32	100	76	100	144	60	433	45	
			33	10	78	100	145	60	500	10	
			34	100	81	100	146	60	501	15	
			35	20	82	100	147	60	502	25	
			36	100	83	30	149	60	993 (sth)	30	
			38	100	87	35	150	-	995 (1111)	45	
			39	100	89	80	153	60	996	20	
			40	20	90	20	154	60	997	60	
			41	100	92	100	155	8	998 (<u>sth</u>)	23	
			42	100	93	-	156	60	998 (nth)	30	
			43	100	94	20	157	-	999	10	
			44	45	95	-	159	- 60		-	
			46	100	100	15	160	60			
	The process of validation, the checking process used,	•	Several key	model va	lidation step	os have b	een taken t	o validate	the resour	ce estima	te;
the comparison of model data to drill hole data, and	•	The mineral	rocourco	model has	haan star	and throug	h vicually	in sections	al and plar	view to	
	use of reconciliation data if available	•		lesource	inouei nas	Deen ster	peu unoug				
			appreciate t	he compo	osite grades	used in t	ne estimate	and the	resultant bl	ock grade	s. This has also
			been carried	l out in 3	D with the c	omposite	arades and	a point o	loud of the	model ar	ades.
		•	Northing, Ea	sting and	l Elevation s	swath plot	ts have bee	n constru	cted to eva	luate the	composited
			assav mean	s against	the mean h	lock estin	nates.				-
			abbuy mean	s against	che mean b						

Section 3: Estimation	and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The reported Mineral Resource is reported at varying cut-off grades, reflecting mining both open pit and underground methods.
		• KOTH open pit resource figures are based on a Measured, Indicated and Inferred pit optimisation shell. This shell was generated with a gold price of A\$2,700/oz using updated unit cost data and pit wall guidelines as at 30 June 2023.
		• Optimisations were conducted on a re-blocking or the Mineral Resource to a 10mN x 10mE x 5mZ model which represent suitable size to reflect current open pit mining practices.
		• The cut-off selected for reporting material within the pit shell is 0.4g/t Au cut-off and for material outside the pit shell is 1.0g/t Au cut-off. Material within the pit shell is primarily aimed to be mined by open pit methods and material outside to be mined using underground methods. However, a proportion of the underground reserve is within the open pit component i.e. located above the pit shell.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal	• The model has been developed to take into consideration for the development of large-scale open pit mining methods and for large scale stoping methods for evaluation purposes.
	(or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual	• The mining methods for underground is a mix of narrow to large scale open stoping and air leg room and pillar. Ore development is conducted by Jumbo with an average height of 5.0m and width of 5.0m. The KOTH decline is 5.8m high x 5.0m wide.
	methods but the assumptions made regarding	• For narrow vein mining additional drilling and on ore development will be required.
	mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	• At grade control level model cell dimensions may need to be modified to suit more detailed geology and mine planning required for production.
Metallurgical factors or	The basis for assumptions or predictions regarding	King of the Hills ore is free milling with a gold recovery averaging 91.5%.
assumptions	metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Ore is process on site with the newly commissioned 4.7Mtpa SAG Mill (CIP) which is increasing to 5.5Mtpa.
Environmental factors or	Assumptions made regarding possible waste and	The project covers an area that has been previously impacted by mining. The tenement area includes additional three additional tenered area.
assumptions	process residue disposal options. It is always	includes existing ethnographic heritage sites. Red 5 and SBM have undertook extensive Aboriginal

Section 3: Estimation	on and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
	necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Heritage Surveys within the tenements and the management measures implemented are still in place.
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 The bulk densities, which were assigned to each domain in the resource model, are derived from over a thousand determinations which were carried out between 1994 and 2001 as part of routine Grade Control procedures. The bulk density values were determined from the previous reports by St Barbara Limited that were validated through recent bulk density measurements completed by Red5. In fresh rock density values ranges between 2.71g/cm3 and 2.80g/cm3
The bulk density for bulk measured by methods account for void space moisture and difference alteration zones within	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique. Red 5 utilises the available underground diamond core, fresh rock, and tests selected samples using the water displacement technique.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 An average mean of densities collected for each weathering profile material, fresh, transitional and oxide
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as a combination of Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For the HGV domains the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153, the classification of Indicated Resources; an average sampling distance within 35m was required. For the Intermediate Dolerite Dyke (IDD) domains, except for domain code 153, the classification of Indicated Resources; an average sampling distance within 35m was required. For domain code 153 the classification of Inferred Resources; an average sampling distance within 70m was required. For domain code 153 the classification of Inferred Resources; an average sampling distance within 70m was required. For domain code 153 the classification of Inferred Resources; an average sampling distance within 70m was required. For domain code 153 the classification of Inferred Resources; an average sampling distance within 45m and within the first two search passes was required. (Note the dolerite dykes are not material in terms of the resource but where they cross the HGV domains they result in a depletion of tonnage and grade within the HGVs.)

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
		 For the Bulk Domain 998, the classification of Indicated Resources; is defined by search pass 1 (7.5m x 7.5m x 2.5m) which requires 1 hole (minimum of 2 samples) and search pass 2 (40m x 40m x 10m) which requires a minimum of 2 holes to be found. If 1 hole is found in search pass 2 material is assigned to the Inferred category. Inferred material has also been assigned based on search pass 3 (60m x 60m x 15m) where the average sample distance is less than 60m and the number of holes used to estimate a block is greater than 1. For all other bulk domains (993, 996, 994 and 997) the resource classification of Indicated Resource, is defined by search pass 1 (10m x 10m x 10m) which requires 4 holes (minimum of 8 samples). Search pass 2 (20m x 20m x 20m) requires 4 holes (minimum of 8 samples) and an average sampling distance between 0m and 30m. For the Inferred resource within search pass 2 having an average sampling distance between 30m and 60m. Inferred material has also been assigned based on search pass 3 (50m x 50m x 50m) which requires 2 holes (minimum of 4 samples) and an average sampling distance of 0m to 60m.
	Whether appropriate account has been taken of all the relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	 All care has been taken to account for relevant factors influencing the mineral resource estimate. The historical reconciled production for pit mining between 1985 to 2004 was 28.4Mt @ 1.8g/t for 1.65Moz contained and for underground from 2010 to 30 June 2022 was 3.0Mt @ 4.0 g/t for 0.39Moz contained.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	 The geological model and the mineral resource estimate reflect the competent person's view of the deposit.
Audits or reviews	<i>The results of any audits or reviews of Mineral Resource estimates.</i>	 Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions.
		 As part of the funding process for the KOTH Final Feasibility Study (FFS) CSA acting as the Independent Technical Expert (ITE) conducted a review of the original KOTH resource model used to develop the reserves for the FFS. The FFS and model released in July 2021 was also independently reviewed and audited by Dr Spero Carras of Carras Mining Pty Ltd. Both parties had identified No fatal flaws. The KOTH grade control model (May 2022) resource update fundamentally has the same model parameters as those used for the original March 2020 resource model (refer to announcement dated 19 Mar 2020) and the June 2021 resource (refer to announcement dated 22 Jul 2021). Parameters modified to adjust to the additional geological data – drilling and mapping. This model has not been reviewed by CSA or Dr Spero Carras of Carras Mining Pty Ltd.
Discussion of relative	Where appropriate a statement of the relative	• The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JOPC code. The resource estimate is a global resource estimate. As for all estimates
accuracy/connuence	Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the	the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
	resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	• The statements relate to a global estimate of tonnes and grade applicable to a bulk mining strategy.

JORC CODE, 2012 EDITION – TABLE 1 REPORT: KOTH GOLD MINE – King of the Hills Open Pit Grade Control Resource reported in 30th June 2023 resource update (Reported as Measured at 0.4 g/t cut off)

Section 1: Sampling	Techniques and Data	
Criteria	JORC Code Explanation	Commentary
Sampling Techniques	ampling Techniques <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole</i>	 Sampling activities conducted at King of the Hills by Red5 included Reverse circulation (RC) and underground diamond core drilling (DD) and underground face chip sampling. For this announcement the updated samples are those collected as part of the King of the Hills (KOTH) open pit RC grade control (GC) program for the stage 1 and 2 pits.
gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	• The RC drill method used for the open pit grade control collects rock cuttings produced by the drill bit. The rock chips travel up the drill string through the inner tube to the rotary splitter. The sample is then passed through the rotary split system to produce a 2 metre composite sample weighing between 2-3 kilograms. The 2m composite samples are collected in numbered calico sample bags, tied and placed in sequence for later collection and submission to the laboratory for assay.	
	• The RC open pit grade control drilling completed by Red5 and was drilled by Jarahfire Drilling between October 2021 and July 2023 and was sampled in accordance with the Company's standard sampling protocols, which are considered to be appropriate and of industry standard.	
	• Sampling methods undertaken at King of the Hills by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drilling (DD) and face chip sampling.	
	 Historical sampling of KUD, KHEX, KHGC, KSD, TADD and TARD series of diamond drill holes (DD), the nature and quality of which is considered to be done using Industry Standard practices and standard sampling protocols. Note historic holes captured within the grade control area were used in the estimate, refer to previous KOTH resource announcement (dated 12 July 2022) for Table 1 for historic core used for the estimate. Details of the historic holes have not been outlined in this report. 	
	Include reference to measures taken to ensure sample representivity and the appropriate calibration	Red 5 are satisfied that the RC grade control grade control sampling was carried out as per industry standard.
	of any measurement tools or systems used	• Red 5 inserted certified blank material into the sampling sequence at a rate of 1:50 samples or as required immediately after samples that had been identified as potentially containing coarse gold.
		Certified Reference Material was regularly inserted into the sampling sequence after every 20 samples to monitor QAQC of the analytical process.
		• All samples are dried, crushed to nominal 2-3mm then split to produce a 500g sample for analysis by Photon Analysis by MinAnalytical at their Kalgoorlie laboratory.
		Refer to previous KOTH resource announcement (dated 12 July 2022) for Table 1 for historic core used for the estimate.
		• RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (1984- 2017).

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Commentary The RC samples obtained from drill cuttings where split using the Rotary splitter attached to the drill rig and collected into numbered calico bags weighing between 2 – 3 kg. All assays for the RC GC samples are crushed to a nominal 2-3mm and split down to 500g and stored in a secured plastic container for Photon analysis. Coarse gold is only occasionally observed in drill core. Coarse gold is rarely seen in RC drill fines. 	
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Drilling type for the open pit grade control (GC) was reverse circulation (RC). The drilling was conducted on a nominal 7m x 7m drill spacing by Jarahfire using a track mounted Atlas Copco ROC L8 drill rig fitted with a 4 ¹/₂" diameter face-sampling RC bit. 	
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed Measures taken to maximise sample recovery and	 Only visual assessment of how full a calico samples was and bag weights at the laboratory for was conduct for assessing sample recoveries Begular checks taken by the geologists of the rotary splitter to ensure appropriate sample size and 	
	ensure representative nature of the sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 The RC chips are logged geologically to a level of detail sufficient to support appropriate Mineral Resource estimation for developing the grade control model. Logging of RC chips has recorded lithology and weathering only as there was sufficient geological data from earlier drilling and the exposures of the pit walls. Logging is qualitative and/or quantitative where appropriate. For the RC GC open pit drill program for stage 1 samples (KOTGC holes) were placed on the ground adjacent to the rig in down hole sequence. Samples where not retained in chip trays as the is sufficient geological data from earlier drilling. Photos of the ordered sample piles where taken. 	
	The total length and percentage of the relevant intersections logged	All RC holes are logged in 2m intervals for the entirety of the hole.	

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	For the KOTGC program only RC drilling was completed.	
		 Note historic drilling captured within the GC areas were used for the estimation and geostatistical analysis. 	
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• RC chip samples travel up the drill string through the inner tube to the rotary splitter. The sample is then passed through the rotary split system to produce a 2 metre composite sample weighing between 2-3 kilograms.	
		All the samples collected where dry.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 All the samples collect for analysis are appropriate for analysis by the Photon Analyser. Samples for Photon Assay are dried and crushed to nominal -3mm and ~500g linear split into photon assay jar for analysis. All excess sample retained. 	
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of	 All sub-sampling activities are carried out by commercial certified laboratory and are considered to be appropriate. 	
	samples.	• Industry standard practice is assumed at the time of historic RAB, RC, AC and DD sampling.	
	Measures taken to ensure that the sampling is	Only routine checks of sample collection observations were done to ensure sampling representative.	
	representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	• KOTH previously name Tarmoola Open Pit has significant historic mining and production history for determining sample size and spacing.	
		No field duplicates were completed at the time of this report.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of drilling data and historic mine production data supports the appropriateness of sample sizes.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The assay method was conducted using the Photon analyser at the MinAnalytical laboratory in Kalgoorlie. Photon Assay is highly accurate, chemical-free and completely non-destructive sample method. Samples are crush to a nominal 2-3mm and split down to 500g. The 500g sample is then placed into a single-use jars which allow for bulk analysis with no chance of cross-contamination between sample. 	
		This method is considered to be appropriate for the material and mineralisation.	
		Acceptable levels of accuracy and precision were established prior to accepting the sample data.	
		 The QAQC procedures and results show acceptable levels of accuracy and precision were established. 	
		 MinAnalytical has National Association of Testing Authorities (NATA) accreditation for the technology, in accordance with ISO/IEC-17025 testing requirements. 	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	• No geophysical tools have been utilised to determine assay results at the King of the Hills project	

Section 1: Sampling	Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary		
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	• QC samples were routinely inserted into the sampling sequence and submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required, establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process.		
	established.	• Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory.		
		• Certified blank material is inserted under the control of the geologist and are inserted at a minimum of one per batch.		
		• QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action.		
		 QAQC data validation is routinely completed and demonstrates sufficient levels of accuracy and precision. 		
		• The laboratory performs its own internal processes including standards, blanks, repeats and checks.		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	RC samples with significant intersections are typically reviewed by Senior Geological personnel to confirm the results.		
	The use of twinned holes.	 No specific twinned holes were drilled, however due to the drilling density several intersections are often in close proximity. Drilling was completed at ~7m x 7m spacing. 		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	 Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. 		
		• All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration and structural characteristics of core) is captured directly by customised digital logging tools with stringent validation and data entry constraints. Geologists load data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules.		
		Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server.		
	Discuss any adjustment to assay data.	The database is secure, and password protected by the Database Administrator to prevent accidental or malicious adjustments to data.		

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
		 No adjustments have been made to assay data. First gold assay is utilised for grade review. Re- assays carried out due to failed QAQC will replace original results, though both are stored in the database. 	
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 RC drill hole collars are marked out pre-drilling and picked up by company surveyors using a total station at the completion of drilling, with an expected accuracy of +/-2mm. Downhole surveys are carried out at regular intervals using a single shot camera, initially at 15m and then 30m thereafter. A final downhole survey is completed using an electronic downhole survey tool (Deviflex Rapid), both in and out runs are recorded. 	
	Specification of the grid system used.	 A local grid system (King of the Hills) is used. A two point transformation to MGA_GDA94 zone 51 is tabulated below: KOTH East KOTH North RL MGA East MGA North RL Point 1 49823.541 9992.582 0 320153.794 6826726.962 Point 2 50740.947 10246.724 0 320868.033 6827356.243 Mine Grid elevation data is +4897.27m relative to Australian Height Datum Historic data is converted to King of the Hills local grid on export from the database. 	
	Quality and adequacy of topographic control.	DGPS survey has been used to establish a topographic surface and aerial/drone survey. Open pit drone survey is done on regular bases.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The drill spacing for the KOTGC programs was completed at an average or ~7m x 7m. This was to complete the required infill GC drilling of the KOTH pit.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Data spacing is nominal 7m x 7m drilled to various depths from 9m to 80m with the average depth around 54m. Sampling conducted at 2m intervals down hole. This drill spacing and sample frequency is suitable for developing open pit grade control model. The Competent Person considers the data reported to be sufficient to establish the degree of geological and grade continuity appropriate for future "Measured" Mineral Resource classification category. 	
Orientation of data in relation to geological	Whether sample compositing has been applied.	Reverse circulation drilling are sampled to 2m composite lengths.	
Suucture	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The grade control drilling orientation is the same as that was used by previous owner – Sons of Gwalia (SOG) approximately perpendicular to the mineralised trend. Sample biasing can occur due to the nature of the mineralisation.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Due to the style of the mineralisation, it is possible, that mineralisation controls are not perpendicular to the drill orientation and hence may not be fully optimal. 	

Section 2	1: Samp	oling Te	chniques	and Data
-----------	---------	----------	----------	----------

Criteria	JORC Code Explanation	Commentary	
Sample security	The measures taken to ensure sample security.	 Recent samples are prepared on site under supervision of geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into larger secured bags and delivered to the laboratory by a transport company. All KOTH samples are submitted to an independent certified laboratory (MinAnalytical, now ALS) in Kalgoorlie for analysis. 	
		• KOTH is a remote site, and the number of external visitors is minimal. The deposit is known to contain visible gold, and while this renders the core susceptible to theft, the risk of sample tampering is considered very low due to the policing by Company personnel at all stages from drilling through to storage at the core yard, sampling and delivery to the laboratory.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 A series of written standard procedures exists for sampling at KOTH. Periodic routine visits to drill rigs and the core yard are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse findings, and any minor deficiencies were noted and staff notified, with remedial training if required. 	
		 No external audits or reviews have been conducted for the purposes of this report. 	

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	<i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i>	 The King of the Hill pit and near mine exploration are located on M37/67, M37/76, M37/90, M37/201 and M37/248 which expire between 2028 and 2031. All mining leases have a 21 year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited. The mining leases are subject to a 1.5% 'IRC' royalty, now owned by Royal Gold Inc. All production is subject to a Western Australian state government 'NSP' royalty of 2.5%
		 All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF.
		• There are currently no native title claims applied for, or determined, over the mining leases.
		 An 'Other Heritage Place' (aboriginal heritage place ID: 1741), referred to as the "Lake Raeside/Sullivan Creek" site, is located within M37/90.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and the licence to operate already exists. There are no known impediments to obtaining additional licences to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The King of the Hills prospect was mined sporadically from 1898-1918. Modern exploration in the Leonora area was triggered by the discovery of the Habour Lights and Tower Hill prospects in the

Section 2: Reporting of Exploration Results

	-	
Criteria	JORC Code Explanation	Commentary
		early 1980s, with regional mapping indicating the King of the Hills prospect area was worthy of further investigation.
		 Various companies (Esso, Anaconda, BP Minerals. Kulim) carried out sampling, mapping and drilling activities delineating gold mineralisation. Kulim mined two small open pits in JV with Sons of Gwalia during 1986 and 1987. Arboynne took over Kulim's interest and outlined a new resource while Mount Edon carried out exploration on the surrounding tenements. Mining commenced but problems lead to Mount Edon Mines acquiring the whole project area from Kulim, leading to the integration of the King of the Hills, KOTH West and KOTH Extended into the Tarmoola Project. PacMin bought out Mount Edon and were subsequently taken over by Sons of Gwalia.
		 St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the name given to the underground mine, which St Barbara developed beneath the Tarmoola pit. St Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine.
		• In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen.
Geology	Deposit type, geological setting and style of mineralisation.	 The KOTH mineralisation is considered to be part of an Archean Orogenic gold deposit with many similar characteristics to other gold deposits within the Eastern Goldfields of the Yilgarn Craton.
		 Gold mineralisation is associated with sheeted and stockwork quartz vein sets within a hosting granodiorite stock and pervasively carbonate altered ultramafic rocks. Mineralisation is thought to have occurred within a brittle/ductile shear zone with the main thrust shear zone forming the primary conduit for the mineralising fluids. Pre-existing quartz veining and brittle fracturing of the granite created a network of second order conduits for mineralising fluids.
		• Brittle fracturing along the granodiorite contact generated radial tension veins, perpendicular to the orientation of the granodiorite, and zones of quartz stockwork. These stockwork zones are seen in both the granodiorite and ultramafic units and contain mineralisation outside the modelled continuous vein system (High Grade Veins).
		 Gold appears as free particles (coarse gold) or associated with traces of base metals sulphides (galena, chalcopyrite, pyrite) intergrown within quartz along late stage fractures.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth	• NA

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Commentary	
	- hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	• NA.	
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	• NA.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	• NA.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• NA.	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Diagram below shows the KoTH Spatial Distribution of Drilling (NEW RC: Red;, OLD RC: Pink Diamond Drilling: Green, & RC with Diamond tails: Orange) 	

ſ

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Comme	mentary
			5500 L
			5250 .
			4/50
			2515000 E F 49750 E F 49750 E F 49750 E F 49750 F F 497
			Diagram below shows the collar positions of the RC GC stage 1 & 2 drill program drilled
			between October 2021 to July 2023 (not including remnant stockpiles)
			11500 N
			11250 N
			11000 N
			10750 N
			10500 N
			10250 N
			10000 N
			9750.N
			9500 N U U U U U U U U U U U U U
			Diagram below shows the open pit grade control areas (dark blue) and confirmation drilling for
			stockpile SP701 (light blue) within stage 1 (green) & stage 2 (yellow) of the KOTH open pit. Only the material in the dark blue areas have been modelled. The reported figures for this
			announcement are only from the dark blue areas.

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		 Diagram highlighting the sub-domaining of Bulk Lode 998 with Stage 1 & 2 Pit designs and GC areas volume. Image: Contract of the sub-domaining of Bulk Lode 998 with Stage 1 & 2 Pit designs and GC areas volume.
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be	 All significant results of the drilling used for the KOTH July 2023 update have been reported in the Appendix 3. Results reported are based on down hole lengths and no top cuts applied.

ſ

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Commentary	
	practiced to avoid misleading reporting of Exploration Results.	 Weighted average composited intervals have been tabulated and included within the main body of the Appendix of the ASX release. 	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other exploration data that may have been collected is considered material to this announcement. 	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is continually reviewing the resource models and geology interpretations. Drilling is currently being planned to test the next one to two-year mine plan for underground, stope derisking for mine planning and resource extensions. No diagrams have been included in this report to show the proposed drilling plans for the KOTH resource. 	

Г

Section 3: Estimation and Reporting of Mineral Resources						
Criteria	JORC Code Explanation	Commentary				
Database Integrity Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation	• The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture.				
	 Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. 					
		• The Database Administrator imports assay and survey data (downhole and collar) from raw csv files.				
		Data from previous owners was taken to be correct and valid.				
	Data validation procedures used.	• The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.				
		Validation of data included visual checks of hole traces, analytical and geological data.				

Section 3: Estimation	on and Reporting of Mineral Resources	
Criteria	JORC Code Explanation	Commentary
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	• The competent person (CP) for the grade control resource model is the Chief Geologist for Red 5. The CP makes regular visits to site.
Geological Interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	 The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed and validated the historical interpretation of the King of the Hills deposit. This knowledge is based on extensive geological logging of drill core, RC chips, detailed open pit mapping and assay data. Results of current mining have also been used. Mineralisation of HGV domains are defined by quartz veining, occurrence of sulphides – pyrite and trace galena and chalcopyrite and elevated gold grade (>0.5 g/t). Mineralisation of stockwork zones (bulk domains) are defined by stockwork quartz veining along the contact of the granodiorite/ultramafic and captures all drill intercepts in the deposit.
		 For the open pit GC model sampling boundaries for the RC grade control program are not geologically defined, and sampling conducted over two metre intervals (2m composites).
		• For the resource model only two main domain types are considered. These are the narrow high-grade veins (HGV) and the Bulk domains. Some domains extend pass the granodiorite into the surrounding ultramafic.
	Nature of the data used and any assumptions made.	The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration.
		 The major granodiorite bulk domain is modelled using Leapfrog software. Sub domains for the bulk area are defined by string interpretation and wireframed.
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	 Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.
	The use of geology in guiding and controlling the Mineral Resource estimation.	 The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.
		 For the open pit GC model sampling boundaries for the RC grade control program are not geologically defined, and sampling conducted over two metre intervals (2m composites).
		• For the resource model only two main domain types are considered. These are the narrow high-grade veins (HGV) and the Bulk domains. Some domains extend pass the granodiorite into the surrounding ultramafic.
	The factors affecting continuity both of grade and geology.	 The main factors affecting continuity are; Structurally offset quartz veining within the hosting granodiorite stock and the pervasively altered ultramafic rocks.
		 Proximity to the granodiorite as mineralisation extends into the altered ultramafic rocks.
		 Potassic alteration in the form of sericite is occasionally associated with mineralisation within the granite whilst fuchsite is often present in mineralised parts of the ultramafic rocks.

Gitteria JORC Code Explanation Commentary Criteria Orientation of tension vein arrays within the hosting granodiorite. These tension vein saces and elled using RC data. Dimensions The extent and variability of the Mineral Resource expressed as length (aking strike or otherwise), plan within, and depth below surface to the upper and lower limits of the Mineral Resource. The extent and variability of the Mineral Resource expressed as length (aking strike or otherwise), plan within, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation and modelling techniques The nature and appropriateness of the estimation is fill opproved and the surface control model is as points. The nature and appropriateness of the estimation is sub vertical. Stockwork mineralisation is filled own to a depth of approximately 590m and the southern half mineralisation is diffied proximal (Sto2) and reported is not yoursidering the southwestern portion and straddles the contact between the ultramafic contact and down plan go to 270m wide at the top of the granodionic fully amplied and key assumptions, including treatment of extrem grade values, domains (ping ad and key assumptions, including treatment of extrem grade values, domains (ping ad approximately 590m and the southern half the sub vertical interalisation is follow and is noticed and wor plan to 2000 with the eastern contact. And the ramation is SUI oppoind in the assum on the assumptions, including treatment of extrem grade values, domains (ping ad a they assumptions, including treatment of extrem grade values, domains, including treatment of extrem grade values domains, intercolation parameters and maximum distance of extrapolation from data points. For t	Section 3: Estimation and Reporting of Mineral Resources								
 Orientation of tension vein arrays within the hosting granodiorite. These tension vein arrays within the central and southern portion of the mine may not necessarily be as continuous as modelled given the thickness of these veins, variability and fact most of these veins are modelled using RC data. The existence of these tension vein has been validated by current underground development and recent drilling and assay of historical information. These factors were used to ald the construction of the mineralisation domains. The existence of these veins, variability of the Wineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The northern section of the mineralisation strikes 30 degrees east of true north over a distance of 700m and is sub vertical. Stockwork mineralisation is sub or exonolicity. Utranapit contact and penetrates up to and over 100 to 200m inter the granodiorite. The average strike of the eastern edge of the granodiorite/utranapit and over 100 to 200m inter the granodiorite/utranapit contact and penetrates up to and over 100 to 200m inter the granodiorite/utranapit exont or and stradelles the contact between the ultramafic host rock and the granodiorite. The average strike of the eastern contact, in the northern half the sub vertical mineralisation is sub or 2.5km by length up to 770m wide at the top of the granodiorite/utranapit contact where the mineralisation is sub or a depth of approximately 590m and the southern half three sub vertical mineralisation is sub action and southern half three sub vertical mineralisation is sub action is sub origonal. Along the eastern contact. The nature and appropriateness of the estimation and recent drilled down the advent of approximately 590m and the southern half three sub vertical mineralisation is sub origonalis, being the main build komains (998 899) and the transitional (502 8 K	Criteria	JORC Code Explanation	Commentary						
Dimensions The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan udits, and depind below surface to the upper and lower limits of the Mineral Resource. The extent and variability of the Mineral Resource of ToOm and plunges to the southwest. Individual lodes due so the southwest in thorito and plunges to the southwest of the unorth over a distance of TOOm and penetrates up to and over 100 to 200m inter the granodionite. The average strike of the eastern contact of the granodionite the granodionite the granodionite the granodionite the granodionite. The average strike of the eastern contact and penetrates up to and over 100 to 200m inter the granodionite. The average strike of the eastern contact, in the rootice the upper and lower limits of the main and modelling techniques The nature and appropriateness of the estimation and modelling techniques The nature and appropriateness of the estimation from data points. The nature and appropriateness of the estimation from data points. For the grade control estimation All bulk domains, loging the main bulk domains (998 & 999) and the estimation is sub forciac) and variager parameters for the grade control estimation and appropriateness of the estimation from data points.			 Orientation of tension vein arrays within the hosting granodiorite. These tension vein arrays within the central and southern portion of the mine may not necessarily be as continuous as modelled given the thickness of these veins, variability and fact most of these veins are modelled using RC data. 						
Dimensions The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nothern section of the mineralised zone (also known as part of the Western Flank) strikes 30 degrees east of Ture north over a distance of 700m and junges to the southwest. Individual lodes distance of 700m and is ub vertical. Stocknown kinneralisation strikes 30 degrees east of true north over a distance of 4km and is vertical. Estimation and modelling techniques The nature and appropriateness of the estimation strike southers. Individual lodes distance of extrapolation from data points. The nature and appropriateness of the estimation ada points. For the grade control model present as southers. The nature and appropriateness of the estimation and modelling techniques The nature and appropriateness of the estimation from data points. The nature and appropriateness of the estimation from data points. For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Notie & Transported 500 & \$01) were estimated using ordinary strained appropriateness of the estimation from data points. For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Notie & Transported 500 & \$01) were estimated using ordinary strained appropriateness of the estimated using ordinary straining or Sin x 2.5mRL parent blocks were sized to reflect the 7mN x 7mE grade control estimation and the stransported 500 as 0 using eract hard and veriging main the strain straining model is as follows;			 The existence of these tension veins has been validated by current underground development and recent drilling and assay of historical information. 						
Dimensions The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nothern section of the mineralisation strikes 30 degrees east of true north over a distance of 700m and plunges to the southwest. Individual lodes dip east at 35 to sub extract as the upper and lower limits of the Mineral Resource. • The noture and appropriateness of the estimation and modelling techniques • The noture and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme granodiation is sub vertical mineralisation is sub prize consistent with domains, being the mineralisation sing be estivated the mineralisation on the interplation is sub prize consistent with geological observation of the mineralisation parameters and maximum distance of extrapolation from data points.			 These factors were used to aid the construction of the mineralisation domains. 						
 The open pit grade control model reported is only considering the southwestern portion and straddles the contact between the ultramafic host rock and the granodiorite. In summary the KOTH mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact. Mineralisation is still open down dip on the eastern contact and down plunge along the northern contact. For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Oxide & Transported 500 & 501) were estimated using ordinary kriging on 5m E x 5mN x 2.5mRL parent blocks were sized to reflect the 7mN x 7mE grade control estimation and variogram parameters for the grade control estimation model is as follows; 	Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The northern section of the mineralised zone (also known as part of the Western Flank) strikes west of true north over a distance of 700m and plunges to the southwest. Individual lodes dip 45 degrees. Eastern Flank mineralisation strikes 30 degrees east of true north over a distance is sub vertical. Stockwork mineralisation runs along the contact of the granodiorite/ultramafic penetrates up to and over 100 to 200m inter the granodiorite. The average strike of the easter granodiorite runs 30 degrees east of true north over a distance of 4km and is vertical. 							
 In summary the KOTH mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is fulled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 500m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 500m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is dilled down to a depth of approximately 590m and the southern half the sub vertical mineralisation is down plunge along the northern contact. For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Oxide & Transported 500 & 501) were estimated using ordinary kriging on 5mE x 5mN x 7.2 smRL parent blocks were sized to reflect the 7mN x 7mE grade control drilling pattern. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of search and variogram parameters for the grade control estimation model is as follows; <u>many town with the south were the prime bulk dowains (200 down down down down down down down down</u>			 The open pit grade control model reported is only considering the southwestern portion and straddles the contact between the ultramafic host rock and the granodiorite. 						
 Mineralisation is still open down dip on the eastern contact and down plunge along the northern contact. Estimation and modelling techniques The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Oxide & Transported 500 & 501) were estimated using ordinary kriging on 5mE x 5mN x 2.5mRL parent blocks were sized to reflect the 7mN x 7mE grade control drilling pattern. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of search and variogram parameters for the grade control estimation model is as follows; 			 In summary the KOTH mineralisation is over 3.7km by length up to 770m wide at the top of the granodiorite/ultramafic contact where the mineralisation is sub horizontal. Along the eastern contact, in the northern half the sub vertical mineralisation is drilled down to a depth of approximately 590m and the southern half mineralisation has been drilled to approximately 250m below surface. 						
Estimation and modelling techniques The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. • For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Oxide & Transported 500 & 501) were estimated using ordinary kriging on 5mE x 5mN x 2.5mRL parent blocks were sized to reflect the 7mN x 7mE grade control drilling pattern. Search parameters are consistent with geological observation of the mineralisation geometry, with three search parameters are consistent with geological observation of the grade control estimation model is as follows; 			Mineralisation is still open down dip on the eastern contact and down plunge along the northern contact.						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	 For the grade control estimation All bulk domains, being the main bulk domains (998 & 999) and the transitional (502) and regolith domains (Oxide & Transported 500 & 501) were estimated using ordinary kriging on 5mE x 5mN x 2.5mRL parent blocks were sized to reflect the 7mN x 7mE grade control drilling pattern. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of search and variogram parameters for the grade control estimation model is as follows; 						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Earch Filinga						
DOM/LINE DOM/LOCIDE Extrype Beam Prilinge Ord (Maj,SM,Ml) (Maj,SM,Ml) (Maj,SM,Ml) (EP1 EP2 EP3 hole Transported 500 0K 0 0 10x10x2.5 20x20x5 40x40x10 2,10 1,10 2,10 2,10 1,10 1,10 1,10 1,10 1,10 1,10			DOMAIN DOM CODE Ert Tuno Boaring Dinger Din EP1 EP2 EP3 Min/Max Samp Min/Max Samp Min/Max Samp Max Samp Per						
Intransponder Job OK O O Intransponder Job Job </td <td></td> <td></td> <td>Doilwinking Doilwinking Pridige Dip (Maj,SM,MI) (Maj,SM,MI) EP1 EP2 EP3 hole Transported 500 OK 0 0 10v10v25 20v20v5 40v40v10 210 <</td>			Doilwinking Doilwinking Pridige Dip (Maj,SM,MI) (Maj,SM,MI) EP1 EP2 EP3 hole Transported 500 OK 0 0 10v10v25 20v20v5 40v40v10 210 <						
Transitional 502 OK 165 0 -35 10x10x2.5 20x20x10 40x40x15 2,10 2,			Oxide S01 OK 0 0 0 10x10x22 20x20x5 40x40x10 2,10 2,10 2,10 2,10 2,10 2						
BULK (DM) 998 OK 165 0 -35 7.5x7.5x2.5 20x20x10 40x40x15 2,3 3,6 1,6 1 BULK (D1) 998 OK 328 -5 70 7.5x7.5x2.5 20x20x10 40x40x15 2,3 3,6 1,6 1 BULK (D2) 998 OK 328 -5 70 7.5x7.5x2.5 20x20x10 40x40x15 2,3 3,6 1,6 1 BULK (D2) 998 OK 326 -20 80 7.5x7.5x2.5 20x20x10 40x40x15 2,3 3,6 1,6 1 WASTE 999 OK 165 0 -35 10x10x2.5 20x20x5 40x40x10 2,3 3,6 1,6 1			Transitional 502 OK 165 0 -35 10x10x2.5 20x20x10 40x40x15 2,10 2,10 2,10 2 Number of the transitional 502 OK 165 0 -35 10x10x2.5 20x20x10 40x40x15 2,10 2,10 2,10 2						
BUEK (D2) 998 OK 326 -7.9 F.M. GARAGAE GARAGAE <thgaragae< th=""> GARAGAE GARAGAE</thgaragae<>			BULK (UM) 998 OK 165 0 -35 /.5X/.5XZ.5 20X.20X10 40X40X15 Z,3 3,6 1,6 1 BILK (UM) 998 OK 328 -5 70 7.57.57.5 20x20X10 40X40X15 2,3 3,6 1,6 1						
WASTE 999 OK 165 0 -35 10x10x2.5 20x20x5 40x40x10 2,3 3,6 1,6 1			BULK (D2) 998 OK 326 -20 80 7.57.52.5 20.2010 40x40x15 2.3 3.6 1.6 1						
			WASTE 999 OK 165 0 -35 10x10x2.5 20x20x5 40x40x10 2,3 3,6 1,6 1						

Section 3: Estimation and Reporting of Mineral Resources

Criteria JORC Code Exp	anation	Comme	ntary														
							Variogra	am Ellipse			Structure	1 (XYZ)			Structure	e 2 (XYZ)	
			DOMAIN	DOM_CODE	Est Type	Bearing	DIP	PLUNGE (tilts ellipse)	NUGGET	Major (m)	Semi-Major (m) Minor (m)	Sill	Major (m)	Semi-Major (m)	Minor (m)	Sill
			Transported	500	ОК	0	0	0	0.321	20	20	1	0.2484	61	61	2	0.4309
			Transitional	501	OK	165	-35	0	0.544	53	20	4 21	0.4583	486	80 77	39	0.0976
			BULK (UM) BULK (D1)	998 998	ОК	165 328,286	-35	-4.698	0.544	53 44	19	21	0.3766	486 246	77	39	0.0796
			BULK (D2)	998	ОК	326.384	79.372	-19.683	0.544	12	12	2	0.2944	54	54	10	0.1613
			WASTE	999	ОК	328.286	69.93	-4.698	0.541	44	5	5	0.3197	246	25	10	0.1396
The availability	of chack astimates previous		Ordinan	Krigin		Invor	co Dict	anco Su	nuarod	(ID2) a	nd Invo	rco Die	stanco	rubod (1	יסאי (צ ח	o comn	lotod
actimates and/	r mina production records and	•	on all de	maine	ac vali	dation	of the	OK ara	doc Th		te woro	found	to bo o	aticfact		c comp	netteu
estimates and/c			on all uc	Jinains	as vali	uation	or the	UK yia	ues. II	ie resu	its were	Touria		ausiaci	ory.		
appropriate acc	ount of such data.																
The assumption by-products.	s made regarding recovery of	•	No assu	mptions	s have	been r	made v	vith res	pect to	the rec	overy of	f by-pr	oducts.				
Estimation of de	eleterious elements or other	•	There ha	as been	no es	timate	at this	point c	of delete	erious e	lements	5.					
non-grade varia	bles of economic significance																
(e a sulfur for	acid mine drainage																
characterication)																
In the case of h	/. lack model internalation the	-	The res		and the	noror	at block			hu Em	(V) by 7	Em(7		o woro	doomod	annran	riata ta
	In the case of block model interpolation, the					e parer	IL DIOCI	k size o	5III(X)	ру эш	(1) Dy 2	.500(2). These	e were	ueemea	approp	nate to
DIOCK SIZE IN FEI	spacing and the search employed.		reflect ti	ne /mix	i x /mi	= grade	e contr	ol ariiiir	ig patte	ern upo	n which	the re	eportea	resourc	e is base	ea.	
spacing and the			The was	ste porti	ions ha	ad pare	ent cell	s of 10r	n(X) by	10m(Y	') by 5m	ı(Z).					
			Three search estimation runs are used.														
Any assumption	s behind modelling of selective	•	The mod	del has	been s	sub-cel	led to	1.25mN	x 1.25	mE and	l 1.25ml	RL to s	suitably	honour	the gra	de conti	rol drill
mining units.	2		pattern	and also	o to ho	onour t	he bul	k doma	in volun	nes as a	accurate	ely as i	possible		0		
Any accumption	a about completion between	_	No poer	mation	. have		mada	aaardia	~ ~ ~ ~ ~ ~ ~	lation h	at	, ,					
variables.	s about correlation between	•	NO assu	mpuons	snave	been r	naue r	egarum	g corre	lation b	etween	varial	nes.				
Description of h	ow the geological	•	The geo	logical	interpr	etation	n stron	gly corr	elates v	vith the	minera	lised d	lomains	being e	estimate	d. Speci	ifically,
interpretation w	as used to control the		where th	ne mine	eralised	l doma	in corr	espond	s with c	uartz v	eining a	and da	ta dens	ity (bull	k domair	ı). Bulk	
resource estima	tes.		wirefran	ne bour	Idaries	captu	re all d	rill inter	cepts v	vithin tł	ne depos	sit wit	h sub-d	omains	generat	ed in ar	eas of
			increase	data-d	ensitv	improv	vina ae	ologica	l confid	ence or	the na	ture o	n miner	alisatio	1. stocky	work. nc	hard
			boundar	ies enfo	orced					0.100 01				2.100100	.,	. only ne	
Discussion of ba	sis for using or not using	•	Top-cuts	s were e	employ	ed to	reduce	the ris	k of ove	erestima	ating in	the loo	cal area	s where	e a few h	nigh-gra	de
grade cutting of	conning	1		- avriate a								histog	ama an	يمر بم م ا ام			of the
	capping.		samples	existed	i. They	/ were	based	on a rig	jorous a	assessn	ient or i	iistogi	allis al	ia iog-p	robabilit	y piots o	

Criteria	JORC Code Explanation	Commentary		
		Domain	Cap July 2023(GC)	Cap July 22 RES
		Bulk (998)	20	30/23 (Sth/Nth)
		Bulk Waste (999)	20	10
		Transition (502)	20	25
		Oxide (501)	15	15
		Transported (500)	3	10
	The process of validation, the checking	Several key model valid	ation steps have been taken to validate	the resource estimate;
	to drill hole data, and use of reconciliation data if available.	The mineral resource m composite grades used with the composite grade	odel has been stepped through visually in the estimate and the resultant block g des and a point cloud of the model grade	in sectional and plan view to appreciate the grades. This has also been carried out in 3D es.
		Northing, Easting and E against the mean block	levation swath plots have been construc estimates.	ted to evaluate the composited assay means
		Declustered means vs E tolerances.	Stimate comparisons per domain were a	lso done and were within acceptable
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estima	ted on a dry basis.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Measured component defined by pit optimisat the all areas of recent of to modelled areas.	int for the KOTH Mineral Resource estim ion at a A\$2,700 gold price using Measu grade control (GC) drilling upon which th	ate includes open pit components only red resources only and DTM's representing is update is based. Refer to Diagram section
		 KOTH open pit resource shell was generated wit at 30 June 2023. 	figures are based on a Measured, Indic h a gold price of A\$2,700/oz using upda	ated and Inferred pit optimisation shell. This ted unit cost data and pit wall guidelines as
		Optimisations were con which represent suitable	ducted on a re-blocking or the Mineral R e size to reflect current open pit mining	esource to a 10mN x 10mE x 5mZ model practices.
		• The cut-off selected for the pit shell is 1.0g/t Au methods and material o underground reserve is	reporting material within the pit shell is a cut-off. Material within the pit shell is p putside to be mined using underground r within the open pit component i.e. locat	0.4g/t Au cut-off and for material outside primarily aimed to be mined by open pit nethods. However, a proportion of the red above the pit shell.
Mining factors or	Assumptions made regarding possible mining	The grade control mode	I has been developed to take into consid	deration for oreblock design for mining.
assumptions	internal (or, if applicable, external) mining dilution. It is always necessary as part of the	The model cell dimension planning and for the de	ons may need to be modified to suit soft signing of practical ore blocks designs fo	ware requirements for detailed mine or production.

Section 3: Estimation and Reporting of Mineral Resources							
Criteria	JORC Code Explanation	Commentary					
	process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.						
Metallurgical factors or	The basis for assumptions or predictions	 King of the Hills ore is free milling with a gold recovery averaging 91.5%. 					
assumptions	regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	• Ore is process on site with the newly commissioned 4.7Mtpa SAG Mill (CIP) which is increasing to 5.5Mtpa.					
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 The project covers an area that has been previously impacted by mining. The tenement area includes existing ethnographic heritage sites. Red 5 and SBM undertook extensive Aboriginal Heritage Surveys within the tenements and the management measures implemented are still in place. 					
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the	• The bulk densities, which were assigned to each domain in the resource model, are derived from over a thousand determinations which were carried out between 1994 and 2001 as part of routine Grade Control procedures. The bulk density values were determined from the previous reports by St Barbara Limited that were validated through recent bulk density measurements completed by Red5.					

ſ

Section 3: Estimation and Reporting of Mineral Resources							
Criteria	JORC Code Explanation	Commentary					
	frequency of the measurements, the nature, size and representativeness of the samples.	In fresh rock density values ranges between 2.69g/cm3 and 2.82g/cm3					
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc),	• The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique.					
	moisture and differences between rock and alteration zones within the deposit.	 Red 5 utilises the available underground diamond core, fresh rock, and tests selected samples using the water displacement technique. Waxing of core was not done for Red 5 measurements. 					
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	An average mean of densities collected for each weathering profile material, fresh, transitional and oxide					
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as Measured only. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For the Bulk Domain 998, the classification of Measured and Indicated Resources; is defined by search pass 1 (7.5m x 7.5m x 2.5m) which requires 1 hole (minimum of 2 samples) and search pass 2 (30m x 30m x 10m) which requires a minimum of 1 holes (minimum of 2 samples) to be found. If 1 hole is found in search pass 2 material is assigned to the Inferred category. Inferred material has also been assigned based on search pass 3 (60m x 60m x 15m) where the average sample distance is less than 60m and the number of holes used to estimate a block is greater than 1. In strictly wireframed areas of recent grade control drilling only a classification of Measured was applied. For the transitional portions of the Bulk Domains (502) the classification of Measured and Indicated Resources; is defined by search pass 1 (10m x 10m x 2.5m) which requires 1 hole (minimum of 2 samples) to be found. If 1 hole is found in search pass 2 (30m x 30m x 10m) where the average sample distance is less than 60m and the number of holes used to estimate a block is greater than 1. In strictly wireframed areas of recent grade control drilling only a classification of Measured and Indicated Resources; is defined by search pass 3 (60m x 60m x 15m) where the average sample distance is less than 60m and the number of holes used to estimate a block is greater than 1. In strictly wireframed areas of recent grade control drilling only a classification of Measured was applied. For the oxide portions of the Bulk Domains (500 & 501) the classification of Measured and Indicated Resources; is defined by search pass 1 (10m x 10m x 2.5m) which requires 1 hole (minimum of 2 samples) to be found. If 1 hole is found in search pass 2 (40m x 40m x 10m) where the average sample dist					
	Whether appropriate account has been taken	All care has been taken to account for relevant factors influencing the mineral resource estimate.					
	or all the relevant factors (le relative						

Section 3: Estimation and Reporting of Mineral Resources						
Criteria	JORC Code Explanation	Commentary				
	confidence in tonnage/grade estimations, reliability of input data, confidence in	 The grade control model has been reblocked (as part of the larger Resource Model) to 10mN x 10mE x 5mZ model which represent the mining block size for open pit mining. 				
	continuity of geology and metal values, quality, quantity and distribution of the data).	• The historical reconciled production for pit mining between 1985 to 2004 was 28.4Mt @ 1.8g/t for 1.65Moz contained and for underground from 2010 to 30 2022 was 3.0Mt @ 4.0 g/t for 0.39Moz contained.				
	Whether the result appropriately reflects the Competent Person's view of the deposit.	• The geological model and the mineral resource estimate reflect the competent person's view of the deposit.				
Audits or reviews	<i>The results of any audits or reviews of Mineral Resource estimates.</i>	 Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions. 				
		 As part of the funding process for the KOTH Final Feasibility Study (FFS) CSA acting as the Independent Technical Expert (ITE) conducted a review of the original KOTH resource model used to develop the reserves for the FFS. The FFS and model released in July 2021 was also independently reviewed and audited by Dr Spero Carras of Carras Mining Pty Ltd. Both parties had identified No fatal flaws. The KOTH grade control model (May 2022) resource update fundamentally has the same model parameters as those used for the original March 2020 resource model (refer to announcement dated 19 Mar 2020) and the June 2021 resource (refer to announcement dated 22 Jul 2021). Parameters modified to adjust to the additional geological data – drilling and mapping. This model has not been reviewed by CSA or Dr Spero Carras of Carras Mining Pty Ltd. 				
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model. 				
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	• The statements relate to a global estimate of tonnes and grade applicable to a bulk mining strategy.				

JORC TABLE 1's Sections 1 to 3 for DARLOT Underground and REGIONAL RESOURCES

Darlot Underground Resource Areas	Refer to Table 1 in ASX Announcements:
Centenary/Middle Walters South	Red 5 Ore Reserve and Mineral Resource
	Statement – 7 th September 2022
Pedersen/Pedersen South/Burswood	Red 5 Ore Reserve and Mineral Resource
	Statement – 7th September 2022
Lords South Lower	Red 5 Ore Reserve and Mineral Resource
	Statement – 7th September 2022
Lords Felsics	See below
Oval	Red 5 Ore Reserve and Mineral Resource Statement – 7th September 2022

Darlot Regional Resource Areas	Refer to Table 1 in ASX Announcements:
Great Western	Red 5 Ore Reserve and Mineral Resource
	Statement – 7 th September 2022
Waikato	Resource and Reserve growth at Darlot Gold
	Mine – 10 th Feb 2020.
Waikato South	Resource and Reserve growth at Darlot Gold
	Mine – 10th Feb 2020.
Cornucopia North	Resource and Reserve growth at Darlot Gold
	Mine – 10th Feb 2020.
St George	Red 5 Ore Reserve and Mineral Resource
	Statement – 7 th September 2022
Mission & Cable	Red 5 Ore Reserve and Mineral Resource
	Statement – 7 th September 2022

JORC Code, 2012 Edition – Table 1 for the Lords Felsics Resource – Part of the Darlot Deposit

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond core (DD) drilling provided pulverized chips and competent lengths of core samples. Drill hole data supporting the Mineral Resource contains 452 unique drill hole IDs for a total sample length of 117,135.82m. A total of 444 Diamond drill holes (117,088.53m), (including 8 RCDD holes) and 8 face samples (47.29m) support the Mineral Resource. Diamond core is predominantly NQ2 with some HQ and was cleaned, laid out, measured and logged in its entirety. Core is marked up with a maximum core length of 1 m, depending on core size. Some core is whole sampled (full core collection) when necessary, but most core is half cut core. Digital photographs are taken and stored for reference purposes. Where possible core is cut in half with one half only being submitted for analysis at the Laboratory, with the other half is stored in the core farm for reference.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The sample data for the Lords Felsics area includes diamond drilling (DD) and reverse circulation holes with diamond core tails (RCDD). The data was collected during 1998 to present. Underground DDH is usually NQ2 or LTK60. Underground face sampling was carried out by the mine geologist painting a sample line orthogonal to the dip of the quartz veining and sampled according to geological intervals. Samples were bagged and ticketed with unique sample IDs and dispatched to the assay laboratory.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Drill sample recoveries are recorded for each sample number and stored in the Acquire database. Diamond core samples were geotechnically logged and sample recoveries calculated. Most drill samples penetrating mineralisation are diamond core. Core recovery factors for core drilling are generally very high typically in excess of 95% recovery. Some loss occurs locally when drilling through

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 fault/shear zones. Face sampling, by its nature, can be a biased sampling method, relying on manual 'picking' of the face by either a geological hammer, or by a Jumbo scraping sample material off the face and collected by the mine geologist. Face sampling can be regarded as having 100% sample recovery; however the Competent Person is cognisant of sampling bias. The use of face samples in grade estimation is provided in Section 3. Periodic reviews of early drilling assay results and bias may be done from time to time where required on historical prospects where new drilling is done. Q-Q Plots of the re-drills and original holes are correlated and any bias (positive / negative) identified. This is utilised in any future interpretations and modelling. The supervising geologist monitored the diamond core recoveries and discussed any shortcoming with the driller. Recoveries are generally very good however.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 A geologist was always present during drilling and sampling. Geological logging protocols at the time of drilling were followed to ensure consistency in drill logs between the geological staff. Diamond core were logged for lithology, structure, stratigraphy, mineralisation, alteration, geophysical (magnetic properties) and geochemical properties (multi-element assays) and physical measurements (rock hardness, geotechnical RQD's, density, acid rock drainage (ARD)). The full sample lengths were logged. Core was photographed (mostly wet).
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 DD core sample lengths can be variable in a mineralized zone, though usually no larger than one-metre. This enables the capture of assay data for narrow structures and localized grade variations. Grade control drill holes are sampled as whole core. DD samples are taken according to a cut sheet compiled by the geologist. Half or full core samples are bagged in pre-numbered calico bags and submitted with a sample submission form. DD core is cut by a field assistant. The sampling protocols for both DD and Face are considered appropriate for the style of mineralisation. A summary of the sample preparation process is as below: Oven dried at 105°C. Jaw crushed to -12 mm. If sample >3kg, Boyd crusher to 3 mm, and riffle split to sake.sike.sike.sike.sike.sike.sike.sike.si

Criteria	JORC Code explanation	Commentary
		 Pulverised in LM5. 250-300 g pulp sample taken. Remainder of pulp returned to calico sample bag. Quality Control (QC) samples are inserted at a rate of 1 in 20. All standards used are Certified Reference Materials (CRM). The insertion of blanks is under the control of the geologist and CRMs are usually inserted one per batch. Sample sizes are considered appropriate to the grain size of the material being sampled. Since 2021 Red 5 has submitted samples to MinAnalytical (now ALS) for Photon assaying which is currently becoming industry wide standard for Archean lode gold systems
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Primary assaying of face samples and DD samples has been undertaken by ALS Kalgoorlie for considerable time. Documentation regarding more historical holes and their sample analyses are not well documented. Analysis is by 50g fire assay (FA) with Atomic Absorption Spectrometer (AAS) finish to 0.01 g/t detection limit. Given the occurrence of coarse gold, Screen Fire Assays (SFA) checks are periodically undertaken. Since 2021 Red 5 has employed MinAnalytical/ALS is NATA ISO17025 accredited for sample preparation and photon analysis The processes are considered total. Previous operators employed a comprehensive QA/QC regime with CRMs, blanks, quartz flush checks and grind checks routinely monitored. Coarse duplicates from crush residue, and pulp duplicates from pulp residues were regularly monitored to test the quality of sub sampling stages. Results are documented on a quarterly basis, with any failures or irregularities investigated and actions taken to correct the issue. Regular communications were had with ALS. Umpire analyses were undertaken at Independent Assay Laboratories (IAL) for selected samples comprising a 100-samples, with differences largely attributable to nugget effects. Acceptable levels of accuracy and precision were established prior to accepting the sample data as support for the Mineral Resource estimate.
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	• Lords Felsics is a recently discovered deposit within Darlot Gold Mine, and intersections with significant Au grade are not unknown. Visible Au

Criteria	JORC Code explanation	Commentary
and assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 is often observed. If core samples with significant intersections are logged, then alternative geological personnel are likely to review and confirm the results. No twin drilling has occurred at Lords Felsics. All data at Darlot is stored in an SQL relational database format using acQuire software. acQuire enables definition of tasks, permission management and database integrity. The SQL Server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. All exploration data control is managed centrally, from drill-hole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration, and structural characteristics of core) is captured directly either by manual or to customised digital logging tools with stringent validation and data entry constraints. Geologists load data in the acquire database where initial validation of the data occurs. The data are uploaded into the database by the geologist after which ranking of the data happen based on multiple QAQC and validation rules.
		 All assay data is uploaded into the database in a text format known as a sif. These files include detailed information about the batch, methods, units, detection limits and elements assayed. The file also includes all QC data in the sequence of analysis. The assay data is stored in a flattened format to ensure all required information is stored for each sample, and that multiple assay results are stored for each sample. Data validation is controlled via rules, library tables and triggers. Once all data for a drill-hole have been entered into the database, the geologist responsible for the drilling program validates each drill-hole. A standard validation trigger in the acquire database run queries against the data, which includes checks for; incorrect collar locations, testing for overlapping, missing or incorrect down-hole surveys, and incorrect collar location. A digital certified assay certificate in Adobe PDF format is backed up on the Darlot server on a regular schedule. A copy of the database also resides on the Red 5 back-up server in Perth. The database is secure, and password protected by the Database

Criteria	JORC Code explanation	Commentary
		No adjustments are made to the data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collars are marked out pre-drilling and surveyed post-drilling by licensed surveyors. All recent DD holes were surveyed down the hole by Reflex non-magnetic multi shot gyro survey. Down hole surveys are routinely undertaken by the drilling contractor and verified by the mine geologist. Drill hole collars are located respective to the local mine grid and to the overall property in UTM MGA94-Zone51. Mine grid north is 44° west of north Australian Map Grid, and all mining Mineral Resource and Ore Reserve work is carried out in Mine Grid. Reduced Level (RL) for surface drilling is calculated by adding 1,000 m to surface elevation, while the underground RL is calculated by taking the surface RL minus the vertical depth to the point being referenced. Underground voids are surveyed by mine surveyors. The survey control on these voids is considered adequate to support the depletion of the Mineral Resource model.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Typical drill spacing in Lords Felsics ranges up to 60x60m, which is reduced to around 20x20m in the resource definition drilling areas. The Competent Person considers the data spacing to be sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource classification categories adopted for Centenary. Samples were not composited prior to dispatch for analyses.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Lords Felsics was drilled by a combination of surface and underground diamond holes. Underground drilling is confined to drill cuddies and the orientation of exploration holes is often oblique to the mineralisation. Resultant sampling bias is usually retained in the drill database and any potential impact upon the Mineral Resource was not assessed. The Competent Person does not believe any potential impacts to be material in terms of grade interpolation.
Sample security	The measures taken to ensure sample security.	 Although security in not strongly enforced, Darlot is a remote site and the number of outside visitors is small. The deposit is known to contain visible gold, and this renders the core susceptible to theft, however the risk of sample tampering is considered low. Darlot Mining Company organise transport companies to pick up bagged samples from a secured locality at the mine site. These are then transported to the laboratory facility for further preparation and assaying. All samples received by the laboratory are physically checked against the dispatch order and Darlot is notified of any discrepancies

Criteria	JORC Code explanation	Commentary
		prior to sample preparation commencing. No Red 5 personnel are involved in the preparation or analysis process.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 A series of written standard procedures exists for sampling and core cutting at Darlot. Periodic routine visits to drill rigs and the core farm are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse findings, and any minor deficiencies were noted and staff notified, with remedial training if required.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Lords Felsics is covered by mining lease M37/155 and held by Darlot Mining Company Limited. This lease covers 1,000Ha and was granted on 18/7/1988, renewed 17/7/2009 and to be renewed on 17/7/2030. Current rental has been paid (\$17,600) and minimum annual expenditure of \$100,000 is required and is being met. There are no Joint Ventures over the tenure and no native title claims. There are no other agreements in place apart from a 2.5% royalty for all gold sold, payable to the Government of Western Australia.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Lords Felsics is part of the Darlot Gold Mine, which has a long history of gold mining and exploration. Alluvial gold was first mined in the area in 1894 with a consequent gold rush between 1895 and 1913. Total gold production from this time is unknown. Limited gold production occurred between 1935 and 1980. Modern exploration of Darlot commenced in the period in the 1970's, with intensive exploration by Sundowner Minerals NL during 1986 to 1988. Darlot open pit mining commenced in 1988, and Sundowner was acquired by Plutonic Resources in 1992, who continued open cut mining through to 1995. Underground mining commenced in 1995 and has continued to the present day. Lords Felsics was discovered in 2015, and resource definition drilling was recommenced in 2018, however no mining has occurred to date. To the end of June 2023, the Darlot Gold Mine has produced 20.3 Mt @ 4.6 g/t Au for 3 Moz. A total of 444 Diamond drill holes (117,088.53 m), (including 8 RCDD holes) and 8 face samples (47.29 m) support the Mineral Resource. 3D seismic surveys were carried out in late 2016 to provide geophysical data in support of planned exploration programs.
Geology	Deposit type, geological setting and style of mineralisation.	 The Darlot lodes are considered to be part of an Archean hydrothermal fault-vein deposit with many similar characteristics with other deposits within the Yilgarn Craton, namely host rock type and nature of hydrothermal alteration; however, it is atypical in being relatively flat-lying rather than steeply dipping. Felsic porphyries and lamprophyre intrusions are encountered throughout the deposit. The major host for gold mineralisation is the Mount Pickering Dolerite. The Lords Felsics deposit is located approximately 0.5 km south-east of the Darlot open pit and has been defined between 550 m and 1,200 m below the surface.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly exploited when the information is present. 	 Gold mineralisation is associated with quartz veins and alteration haloes controlled by major D2 and D3 structures or secondary splays and cross-linking structures. The quartz veins are hosted mainly by magnetic dolerite and magnetic quartz dolerite rock types and, to a lesser extent, by non-magnetic dolerite and felsic volcano-sedimentary rock types. Lamprophyre intrusions are present in the area with a variety of orientations. In most cases the lamprophyres are thought to be premineralisation but are an un-favorable host rock for mineralisation and in most cases are barren. The hanging-wall and foot-wall veins associated with the Lords Felsics mineralisation typically dip to the North between ~3° and 10° with the Main Lords structure dipping at around 40° to the NW. The Newlands Fault is also included in the resource and dips to the SE at around 6°, (All azimuths stated above are Darlot Mine Grid referenced) The Lords Felsics area is yet to be mined; hence the veracity of this estimate is yet to be proven by reconciliation data. Mineralisation is hosted by a fractionated Dolerite sill within the greater Mt Pickering dolerite syncline, with silica+/-albite+/-carbonate+/-pyrite+/-gold being the key alteration components. Drill hole information from Darlot drill programs, predominantly diamond core and face sampling, were used to support the Mineral Resource estimate. The locations of drill samples, and the geological logs of these samples were used to build the geological model, and with the sample analyses, support the Mineral Resource estimate.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Exploration results are not reported here, with most drill holes used to support the Mineral Resource estimate. Sludge samples are recorded in the drill hole database but were not used in the Mineral Resource estimate due insufficient reliability of sampling methods.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 From diamond drilling, mineralisation typically dips to the NW between ~5° and 40°. Drillholes are angled to drill as close to perpendicular to mineralisation as possible, although this is difficult when drilling from underground locations, targeting lode positions along strike from the drill cuddies. Intercepts reported are downhole length, and true width can generally be calculated because the dip of the lode is known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plan view representing the Lords Felsics (Darlot Gold Mine) shown below, with current development (brown), drill traces and the block model at a 2g/t cut off: 4500 N 4500 N

Criteria	JORC Code explanation	Commentary
		 Oblique Sectional view looking NE representing the Lords Felsics (Darlot Gold Mine) shown below, with current development (brown), drill traces and the block model at a 2g/t cut off:
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Exploration results are not reported here, with all drill holes used to support the Mineral Resource estimate.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	• Lords Felsics is part of the Darlot Gold Mine, and the lodes interpretations are all based on data collected from the diamond drill core, with no underground exposures yet available.

Criteria	JORC Code explanation	Commentary
exploration data	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The competent person is not aware of any metallurgical test work that has been carried out on the Lords Felsics mineralisation however it is expected to be analogous with the Felsic Lords South Lower ore which has a proven reconciliation history. Samples were tested for bulk density using the water immersion technique. Fresh core billets (not weathered) were not required to be wax coated prior to immersion.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Lords Felsics is open along strike and down dip, with potential for additional gold mineralisation in these directions. Exploration drilling to test these targets was completed in February 2022 and more drilling is currently being planned.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data is entered directly into the data capture system in the field and reviewed by a geologist before being imported to the main database. Geological Logging at Darlot is collected by geologists and entered directly into an Acquire Database on a laptop computer. Logging is regularly checked by a senior company geologist to ensure the veracity and consistency of the data. Logs cannot be finalised if key fields are missing, nor can codes not existing in the library be entered, ensuring continuity of data, and reducing data entry and transcription errors. Once in the main database, only the database administrators can edit or change data, and all changes are logged by the system.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The Competent Person(s) (CP) are based on site at Darlot and are familiar with the geological setting of the deposit, sampling protocols, quality control and quality assurance (QA/QC) of sample data, resource modelling procedures, current site procedures and policies, and are confident that all data collected is verifiable and has been collected in line with industry best practices to support a Mineral Resource Estimate.
Geological interpretatio n	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	Gold mineralisation is associated with quartz veins and alteration haloes controlled by major D2 and D3 structures or secondary splays and cross-linking structures. The quartz veins are hosted mainly by magnetic dolerite and magnetic quartz dolerite rock types and, to a lesser extent, by non-magnetic dolerite and felsic volcano-sedimentary rock types.

Criteria JORC Code explanation	Commentary
 The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Lamprophyre intrusions are present in the area with a variety of orientations. In most cases the lamprophyres are thought to be premineralisation but are an un-favorable host rock for mineralisation and in most cases are barren. The hanging-wall and footwall veins associated with the Lords Felsics mineralisation typically dip to the North between ~3° and ~10° with the Main Lords structure dipping at around 40° to the NW. The Newlands Fault is also included in the resource and dips to the SE at around 6°, (All azimuths stated above are Darlot Mine Grid referenced) The Lords Felsics area is yet to be mined; hence the veracity of this estimate is yet to be proven by reconciliation data The sample data for the Lords Felsics includes diamond drilling (DD), and reverse circulation (RC) with DD tail only. Some holes were excluded due to erroneous collar and down-hole surveys and a default grade of 0.005g/t was assigned where the gold grade was absent. The interpretations supporting the geological models are predominantly based upon drill hole samples. All geological interpretations for Lords Felsics are prepared in Darlot Mine Grid. The Lords Felsics deposit is yet to be mined and alternative interpretations have been considered as the geological controls are still in the process of being understood. However, all the deposits at Darlot Gold Mine have very similar characteristics and geometries which have all been considered for Lords Felsics. The Lords Felsics Deposit is sub-divided into eleven mineralised domains based on geology and structure, with the steeper Lords and Newlands fault hosted domains separated from the flatter wing yein hosted mineralisation such as the hanging-wall and foot-wall lode areas. Those domains with similar characteristics were grouped geostatistically. The site geologists prepared the interpretations of the mineralised lodes within these domains and the 84 lodes are modeled as individual wireframes based on both litho

Criteria	JORC Code explanation	Commentary
Criteria Dimensions Estimation and modelling techniques	 JORC Code explanation The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine 	 Commentary The deposit has an overall strike length of about 1.75km and a width of about 900 m and extends from about 660m to 1,460 m below the natural surface. As previously noted, the Mineral Resource estimate has been divided into eleven (11) domains for resource estimation. The model was constructed with wireframing in Leapfrog (v2021.2) software. The 84 wireframes mentioned above were imported directly into Vulcan (v2022) for grade estimation and resource reporting. Vulcan was used for block modelling, grade interpolation, and Mineral Resource classification and reporting. Spowden Supervisor was used for
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Resource classification and reporting. Showden Supervisor was used for geostatistical analyses. The Au domain interpretations were based upon both geology and grade. Significant amounts of lamprophyre which are generally barren cross-cut some of the lodes, some of the larger ones were wire-framed by the site geologists, while a categorical estimation technique was applied to model out the less continuous dykes, based on an indicator kriging technique. These areas are then flagged as waste in the final model. The Lords Felsics area is yet to be mined; hence the veracity of this estimate is yet to be proven by reconciliation data. No check estimates are known to have been completed. No significant amounts of deleterious elements have historically been encountered or estimated in the Lords Felsics deposit, and hence have never been considered for estimation in the Mineral Resource. Pyrite does not occur in significant enough quantities to be considered for acid mine drainage (AMD) considerations. All of the Lords Felsics lodes are entirely in fresh rock All lodes were sub-celled to 1x1x0.5m block sizes with a nominal parent cell size of 20x20x5m. In resource definition areas this was reduced to 5m (X) x 5m (Z), to more accurately represent the closer spaced drilling. Typical drill spacing in Lords Felsics ranges up to 60x60m, which is reduced to around 20x20m in the resource definition areas. The table below summarizes the search parameters used.

Criteria	JORC Code explanation	С	ommentary					
]	Control	Parameter		Search pass		1
					1	2	3	1
			Lords, Newlands and	Major	5	30	60	
			Pipeline Search (m)	Semi-major	5	30	60	1
				Minor	5	10	20	
			Number of samples	Minimum	2	6	3	1
				Maximum	3	12	12	
			Lords Felsics Search (m)	Major	5	30	60	
			(HW and FW Lodes)	Semi-major	5	30	60	1
				Minor	5	10	20	
			Number of samples	Minimum	1	2	1	1
				Maximum	3	3	3	
Moisture	Whether the tonnages are estimated on a dry basis or with natural	•	All gold grades we Distance methods. Samples were con A variety of top cut dependent on the assessment of out Lords Felsics is pri been considered for The estimates wer assessments, decl for each domain at	re estimated us posited to 1 m ts were applied statistics for ea liers and histog imarily a gold d or analysis. e validated in t lustered sample nd swath plots.	sing Ordinary intervals. to the compo ch domain. T gram skewnes leposit and ot hree ways, by e mean grade	Kriging and sites of up t nis was base s. ner element on-screen s vs. block r	Inverse o 30g/t; ed on s have not visual nean grades	5
moistare	moisture, and the method of determination of the moisture content.		Tonnages are esti		Dasis.			
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	•	All geological inter both grade and lith	pretations were lology, and an	e completed b approximate l	y site geolog ower cut-off	jists based c of 0.5g/t.	on
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	•	Domains were mo	delled to a min	mum 1 m pla	n width.		

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 During the mining history of Darlot the mill has generally achieved >93- 95% recoveries with a significant portion of the gold also captured by a gravity circuit. Current recoveries for Darlot ore that is being process at King of the Hills processing plant is 90.5%. The competent person is not aware of any metallurgical test work that has been carried out on the Lords Felsics mineralisation however it is expected to be analogous with the Felsic Lords South Lower ore which has a proven reconciliation history.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Darlot has had an extensive mining history and as such has full infrastructure for the treatment of processing and mining residues. Darlot is certified as ISO14001 compliant for OHS and environmental management.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A dry (in situ) bulk density of 2.90 t/m3 has been used for all lithologies. This value has been historically assigned for the Darlot project area for all fresh rock material. Data is available for bulk density determinations and is recorded in Red 5 Limited's database and was assessed by previous operators of the Darlot Gold Mine. The CP is satisfied that the value used is verifiable and typical given their knowledge and experience in similar deposits in the Eastern Goldfields of Western Australia. All the bulk density records that have been sighted were determined by the Archimedes method of immersion in water, with no wax coating required as porosity is not an issue in Darlot host rocks. These samples are considered representative of the lodes and waste zones.
Classificatio n	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource is classified as Indicated and Inferred. The geological evidence for mineralisation occurrence and continuity was observed only in drill samples of the Lords Felsics lodes. For classification of Indicated; in the main steep lodes a drill spacing of <30 x 30 m was required, with <20 x 20 m for the flatter lodes. For classification of Inferred; < 60 x 60 m for steep lodes and < 40 x 40 m for the flatter lodes. Any blocks outside these parameters were unclassified. Drill sampling and analytical techniques for DD as well as face sampling are well documented by Red 5 Limited, as well as rigorous QAQC

Criteria	JORC Code explanation	Commentary
		 protocols and documentation to support an Indicated Resource Classification where geological confidence allows. The classification of the Mineral Resource considered the geological understanding of the deposit, quality of the samples, quality and quantity of density data, drill hole spacing, and the quality of the block grade estimates. Geological understanding and quality of samples is sufficient to assume geological and grade continuity in the Indicated volumes. All relevant factors have been considered when determining the resource classification for Lords Felsics deposit, and the results are deemed by the CP to be fair and relevant.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Mineral Resource Estimate was peer reviewed internally by Red 5 Senior Geologists.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Mineral Resource estimate is considered a global resource for both Indicated and Inferred Resource estimations. The CP is comfortable that the systematic QA/QC of the drilling samples is sufficient to verify the veracity of the estimate, as the deposit is yet to be exploited.