

1 May 2019

Maiden JORC open pit Resources defined for near-mine regional deposits at King of the Hills

Combined Resources of 114,900oz for Rainbow and Severn deposits demonstrates potential to define shallow open pittable Resources in close proximity to potential stand-alone processing plant

- Maiden JORC 2012 open pit Mineral Resources estimated for the Rainbow and Severn deposits, located immediately south of existing mining operations at King of the Hills (KOTH) Project in WA:
 - 0 Rainbow: Indicated and Inferred Resource of 1.6Mt @ 1.3g/t Au for 67,000oz
 - O Severn: Indicated and Inferred Resource of 0.9Mt @ 1.6g/t Au for 47,900oz
- Provides a solid foundation for Red 5's strategy of defining open pit ore sources to provide early mill feed to support a potential development of a stand-alone processing facility at KOTH. The Rainbow resource is ~83% oxide and transition, and Severn is ~69% oxide and transition¹.
- A stand-alone processing plant represents a fundamental element of the bulk mining strategic review that commenced in December 2018, following the delivery of an initial 1.88Moz bulk mining Mineral Resource at KOTH (see ASX announcement on 4 December 2018).
- The previously-announced 13,300m regional RC drilling program is continuing to test five additional priority near-mine open pit targets at KOTH, with this drilling to feed into future Resource and Reserve estimates where possible.
- Updated bulk mining Mineral Resource for KOTH scheduled for release later in the June 2019 quarter.

Red 5 Limited ("Red 5" or "the Company") (ASX: RED) is pleased to announce the completion of maiden JORC 2012 Mineral Resource estimates for the Rainbow and Severn near-mine deposits at the King of the Hills (KOTH) Gold Project in Western Australia (Figure 1), calculated on drilling completed by past owners. This work highlights the potential to define near-mine open pit resources that will support the broader bulk mining strategic review currently underway at KOTH.

The combined Rainbow and Severn open pit Resources, which total approximately 114,900 ounces of contained gold, provide solid support to the Company's strategy to define opportunities to provide early mill feed for a potential stand-alone processing plant at KOTH.

The potential development of a stand-alone processing plant represents a fundamental element of the bulk mining strategic review that is now underway following the delivery of an initial 1.88Moz bulk mining Mineral Resource at KOTH (see ASX announcement on 4 December 2018).

Red 5 is currently undertaking a major 13,300m regional drilling program to test five additional priority near-mine targets at KOTH (see ASX announcements on 19 February 2019 and 15 April 2019).

1. Refer to Appendix 1 and 2 respectively for the reported tonnage figures by material type.

Figure 1: Location of the Rainbow and Severn near-mine deposits at KOTH.

MANAGEMENT COMMENT

Red 5 Managing Director, Mark Williams, said the completion of maiden Mineral Resource estimates for two key near-mine deposits at Rainbow and Severn added further momentum to the Company's ongoing bulk mining strategic review at KOTH.

"This is a big free-kick for us and the ongoing KOTH bulk mining strategic review. The Rainbow and Severn deposits establish a baseline of open pit Resources within a 6km radius of a potential stand-alone processing plant at King of the Hills which can be developed to provide early mill feed.

"Early cash-flow is important and our objective with this campaign is to delineate sources of oxide and transitional open pit mineralisation that can supplement production from the existing KOTH underground mining operation to feed a potential stand-alone processing plant, should further studies prove positive, during a pre-strip requirement of the KOTH open pit.

"We believe there is excellent potential to continue to grow the near-mine open pit Resource base, with our ongoing regional drilling program designed to progressively test five priority near-mine targets, each of which has the potential to yield further Resources," he said.

"The early success of our regional exploration campaign at KOTH once again demonstrates just how under-explored our broader tenement package is. We are confident that we can add to our already significant Resource base with sustained, focused and systematic exploration. This is an exciting opportunity for the Company alongside the bulk mining story at KOTH which will unquestionably remain the centrepiece of our growth story over the next few months."

RAINBOW MINERAL RESOURCE

Table 1: Rainbow Mineral Resource as at 30 April 2019

Classification	Cut-off (g/t Au)	Tonnes (t)	Gold (g/t)	Contained Gold (oz)
Indicated	0.6	1,380,000	1.3	57,700
Inferred	0.6	200,000	1.4	9,300
Total	0.6	1,580,000	1.3	67,000

Notes on Rainbow JORC 2012 Mineral Resources

1. Mineral Resources are quoted as inclusive of Ore Reserves.

2. Discrepancies in summation may occur due to rounding.

3. Refer to Appendix 1 for Resources reported by material type, and JORC 2012 Table 1, sections 1 to 3.

The Rainbow deposit is located 3.5km south of the Tarmoola open pit at KOTH, proximal to a NW-striking shear that splays off the Ursus Fault Zone.

The deposit consists of a mineralised basalt with a NW-strike and shallow (30°) dip to the north-east. The basalt unit sits between two strongly sheared ultramafic units with lesser units of felsic porphyry intrusive and mafic schist present. Mineralisation occurs in multiple styles including shallow laterite and colluvium, supergene-enriched saprolite and primary mineralised basalt.

The Rainbow open pit was mined by Sons of Gwalia Ltd between March and April 2004, delivering some 314,190 tonnes grading 1.03g/t Au for 10,420oz recovered. Available pit survey data suggests the pit was mined to ~18m below surface.

Mineralisation has been sparsely tested at depth, however the limited number of existing 'deep' (<198m) holes show good continuity of mineralisation to depth.

Figure 2: Rainbow resource model plan projection view (mine grid). Black lines represent contours of the shallow historically mined Rainbow pit.

Figure 3: Rainbow resource model cross-section 17700mN (looking local grid north).

SEVERN MINERAL RESOURCE

Table 2: Severn Resource as at 30 April 2019

Classification	Cut-off (g/t Au)	Tonnes (t)	Gold (g/t)	Contained Gold (oz)
Indicated	0.4	480,000	1.7	27,100
Inferred	0.4	440,000	1.5	20,800
Total	0.4	920,000	1.6	47,900

Notes on Severn JORC 2012 Mineral Resources

1. Mineral Resources are quoted as inclusive of Ore Reserves.

2. Discrepancy in summation may occur due to rounding.

3. Refer to Appendix 2 for Resources reported by material type, and JORC 2012 Table 1, sections 1 to 3.

The Severn deposit is located 4.6km south-east of the Tarmoola open pit, and is situated along the NNW-striking Tarmoola Fault Zone.

Gold mineralisation is associated with the Severn Chert unit \pm flat dipping shears and cross-cutting eastwest striking faults. The Severn Chert separates high-magnesium basalt and tholeiitic basalt units, providing rheology contrasts for mineralisation.

Figure 4: Severn resource model – plan projection view (mine grid).

Figure 5: Severn resource model cross-section 16800mN (looking local grid north).

Summary Discussion of Rainbow Mineral Resource Estimate

Geology and Geological Interpretation

The Rainbow deposit consists of predominantly mafic and ultramafic units with the primary mineralisation hosted in basalts and within weathered ultramafic and laterite units. A recent review of the geology and mineralisation indicates that mineralisation is believed to occur in three forms: (i) transported mineralisation within the pisolites of laterite and colluvial channels, (ii) supergene mineralisation within weathered and variably oxidised carbonated basalt, sheared microgranite dykes and chlorite schist, and (iii) primary mineralisation that appears to be patchy within fresh rock. The majority of mineralisation defined so far is located within the transported and residual weathering horizons.

A global Mineral Resource model has been prepared for the purposes of this announcement, and includes recent updates to the geological interpretation within all seven mineralised domains and two un-mineralised domains. The updated interpretations supporting the geological models are based on drill-hole logs and samples of reverse circulation, air core and diamond drill holes.

RED5 Limited

Drilling Techniques

A total of 517 Reverse Circulation (RC) holes (21,419m), 106 Air Core (AC) holes (4,281m) and 5 diamond drill (DD) holes (633m) carried out by previous owners support the Mineral Resource. Drilling methods undertaken at Rainbow by previous owners included rotary air blast (RAB), reverse circulation (RC), aircore (AC), and diamond drillholes (DD). RAB data has only been used for lithological and regolith interpretations and were not included for grade interpolation. No additional drilling has been completed by Red 5 Limited.

Sampling and Sub-Sampling Techniques

Diamond Drill core sample lengths can be variable in a mineralised zone, though usually no larger than one-metre. Reverse Circulation holes were sampled at 1 metre downhole intervals. No additional drilling has been completed by Red 5 Limited.

Sample Analysis Method

Historical documentation of drilling programs and their sample analyses methodologies are variable and are typically poorly or insufficiently described. Historic analysis typically included traditional fire assay fusion, or aqua regia digest with AAS finish, with possibly some other methods not described.

Estimation Methodology

All geological interpretations were prepared in local grid. Geological interpretations are based on drill logs' geological descriptions (all sample data), and gold assays constrained by a minimum downhole length of 2 metres. Individual geological domains were assigned a domain code as a unique identifier. Variography was completed on four major domains (101, 201, 203 and 301) based on geological conditions; ore control, orientation and spatial position within the deposit. The smaller domains (102, 103 and 202) and 'waste' or 'sub-grade' domains (401 and 402) which contained insufficient data for variography analysis were individually assigned variogram parameters based on their 'same' geological parameters as Domains 101, 201, 203 or 301. Directional search ellipsoids were determined by variography and applied accordingly.

Sample data was composited to 1 metre downhole intervals and high grade top cuts were then applied. Top-cut values where determined using statistical methods (quantiles, log histograms, and log probability plots) for each domain group. Ordinary Kriging (OK) was the primary estimation method for grade interpolation. The estimation method of inverse distance squared was also completed in concurrence with OK across all domain groups and allowed additional validation of the final OK model. Average bulk density values were assigned to each domain based on historical mining data and similarities with similar lithologies to those within the nearby Tarmoola open pit. Validation of the global model was completed to ensure blocks were correctly coded for geological domains, and that the estimated gold grades honoured the surrounding drill assay data

Cut-off Grades

All geological interpretations associated with mineralisation were completed based on grade, lithology and where necessary a minimum wireframe width of 2 metres. Wireframes generated were treated as hard boundaries. Mineralisation envelope boundaries were generated by digitising wireframes defined by low grade boundaries at 0.2g/t Au, and including up to a maximum 3 metres of internal 'waste' or 'sub-grade' dilution. Digitising was carried out on 10 metre drill sections to generate 3D wireframes. Where close space drilling occurred, the drill section spacing was reduced to 5 metres. Due to the sporadic nature of mineralisation it was not always possible to limit the internal 'sub-grade' dilution to 3

metres and therefore the search parameters were tightly constrained in the minor direction (z-direction) to limit the over-spreading of grade, therefore controlling and honouring internal dilution. High grade top cut-off grades of 10g/t were applied to all domains. All domain boundaries were treated as hard boundaries to reduce the effect of over spreading grade across boundaries. The Mineral Resources are reported above a cut-off grade of 0.6g/t Au, which is determined based on the assumption of reasonable prospects for economic extraction by open pit mining methods.

Classification

The Mineral Resource model is classified as a combination of Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, and search volume by using a perimeter string.

Other Material Modifying Factors

No significant amounts of deleterious elements have historically been reported for the Rainbow deposit and therefore was not considered for estimation in the Mineral Resource. Pyrite does not occur in significant enough quantities to be considered for acid mine drainage (AMD) potential.

Summary Discussion of Severn Mineral Resource Estimate

Geology and Geological Interpretation

The Severn project consists of a predominantly northerly trending high-Mg basalt and tholeiitic basalt units, with lesser thin chert and banded iron formation (BIF) horizons. Gold mineralisation is hosted mostly within thin chert and BIF horizons. Increased gold grades occur at the intersection with flat-lying northeasterly dipping shears, and plunge shallowly to the north. Several east-west trending faults are present, with minimal apparent offset.

A global Mineral Resource model has been prepared for the purposes of this announcement, and includes recent updates to the geological interpretation of six mineralised domains. The updated interpretations supporting the geological models are based upon drill-hole logs, and samples from reverse circulation and diamond drill holes.

Drilling Techniques

A total of 113 Reverse Circulation (RC) holes (793m) and 5 diamond drill (DD) holes (72m) carried out by previous owners support the Mineral Resource. Drilling methods undertaken at Severn by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), and diamond drillholes (DD). RAB data has only been used for lithological and regolith interpretations and were not included for grade interpolation. No additional drilling has been completed by Red 5 Limited.

Sampling and Sub-Sampling Techniques

Diamond Drill core sample lengths can be variable in a mineralised zone, though usually no larger than one metre. Reverse Circulation holes were sampled at 1 metre downhole intervals. No additional drilling has been completed by Red 5 Limited.

Sample Analysis Method

Historical documentation of drilling programs and their sample analyses methodologies are variable and are typically poorly or insufficiently described. Historic analysis typically included classical fire assay fusion, or aqua regia digest with AAS finish, with possibly some other methods not described.

Estimation Methodology

All geological interpretations were prepared in local grid. Geological interpretations are based on, drill logs' geological descriptions (all sample data), and gold assays and constrained by a minimum downhole length of 2 metres. Individual geological domains were assigned a domain code as a unique identifier, while multiple domains (100, 102, 200 and 202) were grouped based on specific geological conditions; ore control, orientation and spatial position within the deposit, for variography analysis. Directional search ellipsoids were determined by variography and applied accordingly.

Sample data was composited to 1 metre downhole intervals and high-grade top cuts were then applied. Top-cut values where determined using statistical methods (quantiles, log histograms and log probability plots) for each domain group. Ordinary Kriging (OK) was the primary estimation method for grade interpolation. The inverse distance squared estimation was also completed in concurrence with OK across all domain groups and allowed additional validation of the final OK model. Average bulk density values were assigned to each domain based on regolith was assigned to each domain based on similarities with similar lithologies to those within the nearby Rainbow and Tarmoola open pits. Validation of the global model was completed to ensure blocks were correctly coded for geological domains, and the estimated gold grades honoured the surrounding drill assay data.

Cut-off Grades

All geological interpretations associated with mineralisation were completed based on grade, lithology and where necessary a minimum wireframe width of 2 metres. Wireframes generated were treated as hard boundaries. Mineralisation envelope boundaries were generated by digitising wireframes defined by low grade boundaries at 0.30g/t cut and including up to a maximum 3 metres of internal 'waste' or 'sub-grade' dilution. Digitising was carried out on 10 metre drill sections to generate 3D wireframes. High grade top cut-off grades of 10g/t were applied to domains 100 and 200 and within the 'waste' or 'un-mineralised' domains. All domain boundaries were treated as hard boundaries to reduce the effect of over spreading grade across boundaries. The Mineral Resources are reported above a cut-off grade of 0.4g/t Au, which is determined based on the assumption of reasonable prospects for economic extraction by open pit mining methods.

Classification

The Mineral Resource model is classified as a combination of Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, and search volume by using a perimeter string.

Other Material Modifying Factors

No significant amounts of deleterious elements have historically been reported for the Severn deposit or estimated in the Severn Mineral Resource model, and therefore was not considered for estimation in the Mineral Resource. Pyrite does not occur in significant enough quantities to be considered for acid mine drainage (AMD) potential.

ENDS

For more information:

Investors/Shareholders: Mark Williams, Managing Director John Tasovac, Chief Financial Officer Red 5 Limited Telephone: +61 8 9322 4455 **Media:** Nicholas Read Read Corporate Tel: +61-8 9388 1474

Competent Person's Statement

Mineral Resource

Mr Byron Dumpleton, confirms that he is the Competent Person for the Mineral Resources summarised in this Report and Mr Dumpleton has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Dumpleton is a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Mr Dumpleton is a Member of the Australian Institute of Geoscientists, No. 1598. Mr Dumpleton has reviewed the Report to which this Consent Statement applies. Mr Dumpleton is a full time employee of Red 5 Limited. Mr Dumpleton verifies that the Mineral Resource estimate section of this Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in his supporting documentation relating to Mineral Resource estimates.

JORC 2012 Mineral Resource and Ore Reserves

Red 5 confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

Forward-Looking Statements

Certain statements made during or in connection with this statement contain or comprise certain forward-looking statements regarding Red 5's Mineral Resources and Reserves, exploration operations, project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Red 5 believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward looking statements and no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in metals prices and exchange rates and business and operational risk management. Except for statutory liability which cannot be excluded, each of Red 5, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this statement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this statement or any error or omission. Red 5 undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

Appendix 1

Rainbow Project – Global Tonnes and Grade

Table 1: Rainbow Global Tonnes and Grade at 0.6g/t cut-off grade reported for this announcement

Rainbow Resource as at 30 April 2019								
Classification Cut off (g/t) Tonnes (t) Gold (g/t) Contained Gold (
Indicated	0.6	1,380,000	1.3	57,700				
Inferred	0.6	200,000	1.4	9,300				
Sub Total	0.6	1,580,000	1.3	67,000				

Table 2: Rainbow Global Tonnes and Grade at 0.6g/t cut-off grade base on material type reported for this announcement

Rainbow Resource as at 30 April 2019 by Material Type							
Classification	Material Type	Cut-off	Tonnes (t)	Gold (g/t)	Contained Gold (oz)		
	Oxide	0.6	580,000	1.2	21,700		
Indicated	Transitional	0.6	670,000	1.4	30,300		
mulcateu	Fresh	0.6	140,000	1.3	5,700		
	Total	0.6	1,380,000	1.3	57,700		
	Oxide	0.6	40,000	0.9	1,000		
Informed	Transitional	0.6	80,000	1.0	2,600		
interreu	Fresh	0.6	80,000	2.1	5,600		
	Total	0.6	200,000	1.4	9,300		
	Oxide	0.6	610,000	1.2	22,700		
Total	Transitional	0.6	750,000	1.4	32,900		
TOtal	Fresh	0.6	220,000	1.6	11,300		
	Total	0.6	1,580,000	1.3	67,000		

Rainbow Project – Significant Assays for Underground Drilling

Table 3: Rainbow drill hole collar locations reported for this announcement (Data reported in Mine Grid)						
BHID	Easting	Northing	Elevation	LENGTH	DRILLTYP	
BMAC0002	17840.36	119938.2	2779.308	7	AC	
BMAC0003	57360.12	378724.9	8739.5	36	AC	
BMAC0004	31975.09	207544.2	4762.08	18	AC	
BMAC0007	22242.2	156316.1	3572.028	12	AC	
BMAC0008	27795.08	191971.2	4365.691	15	AC	
BMAC0009	25818.64	175345.7	3968.65	13	AC	
BMAC0010	7840.719	52726.51	1190.346	3	AC	
BMAC0011	5280.72	35235.55	793.54	2	AC	
LTA339	98503.33	549500.4	12761.34	54	AC	
LTA340	64197.14	345256.6	8084.74	36	AC	
LTA341	58369.75	311140.2	7241.796	19	AC	
LTA342	66810.2	363383.2	8429.694	21	AC	
LTA343	97604.46	535718.1	12474.77	42	AC	
LTA344	56377.39	310857.5	7243.614	30	AC	
LTA345	65428.1	362428.3	8453.508	30	AC	
LTA346	92975.1	517413.8	12051.6	38	AC	
LTA347	88921.66	499507.3	11574.51	55	AC	
LTA348	64140.26	362814.7	8383.41	33	AC	
LTA349	80267.33	449790.3	10408.22	26	AC	
LTA350	71730.56	398420.2	9216.307	33	AC	
LTA351	69366.4	381592.1	8823.738	36	AC	
LTA352	55650.46	312542.9	7193.52	24	AC	
LTA353	82587.2	468200.5	10790.28	35	AC	
LTA354	81698.73	467586.6	10790.28	45	AC	
LTA355	49993.58	278179.7	6394.24	32	AC	
LTA356	49404.32	263456.6	5979.615	39	AC	

174257	(5244.20	350030.0	7074.02	22	10
LIA357	65214.28	350820.8	/9/4.02	33	AC
LTA358	48417.11	262774.6	5979.24	27	AC
174359	47923 5	262433.6	5980 14	24	٨٢
	05070.04	171766	10700.20	21	
LIA360	85373.81	4/1/66.5	10790.28	42	AC
LTA361	59452.65	331551.9	7593.16	29	AC
174362	46442 7	261410 5	5994.6	29	AC
174362	64265 46	201110.5	7002.0	23	
LIA363	61265.46	348092.6	7992.8	27	AC
LTA364	78789.52	451929.2	10390.64	26	AC
LTA365	71939.02	416619.8	9588.696	31	AC
174366	74226	425007.2	0051.2	40	٨٢
LIASOO	74220	433007.3	3331.2	42	AC
LTA367	96062.3	557536.9	12792.26	32	AC
LTA368	27313.69	157011.9	3596.76	11	AC
174369	19081 18	279496	6394 24	21	٨٢
	40000.57	273450	5176.6	51	AC
LIA370	40308.67	22/386	5176.6	26	AC
LTA371	50137.18	280223.5	6371.2	23	AC
LTA372	88661.47	491027.7	11178.47	45	AC
174072	62007.76	251100.0	7062 52	15	
LIA373	63987.76	351188.8	7963.52	35	AC
LTA374	80835.78	439513.2	9957.5	47	AC
LTA375	55527.75	299255.5	6773.208	36	AC
174276	67621.20	101152 0	0152 2//	10	٨٢
LIASTO	07034.28	401132.8	9152.344	40	AC
LIA3/7	83258.78	488996.5	11142.74	36	AC
LTA378	99212.32	577067.6	13133.11	36	AC
LTA379	60786.82	350192.6	7964	34	AC
174200	16002 72	26200E F	E072	20	۸۲
LIASO	40083.72	202985.5	5973	30	AC
LTA381	52787.64	298436.7	6754.61	27	AC
LTA382	94175.97	527285.8	11919.9	42	AC
174383	50753 68	281582.8	6369 952	22	AC
174204	51380.10	201302.0	6373.16	20	10
LIA384	51280.19	281946.6	6372.16	30	AC
LTA385	64068.44	384616.3	8750.28	36	AC
LTA386	94279.84	560116.7	12728.7	36	AC
174387	65541 34	385580.4	8751 16	35	٨٢
	72200.42	421170.0	0731.10	35	AC
LIA388	72289.42	421178.9	9535.92	39	AC
LTA389	70034.22	404152.7	9138.59	33	AC
LTA390	58463.95	334286.4	7549.27	27	AC
174201	126974 2	775162.2	17502.24	50	٨٢
	150874.5	175102.5	17505.24	50	AC
LTA392	84879.52	476281.6	10744.89	44	AC
LTA393	79414.83	441569.9	9953.425	42	AC
LTA394	69238.06	420529.1	9543.048	37	AC
174395	81699 13	101253 0	11133 25	37	٨٢
LIASSS	81033.13	491253.9	11133.25	37	AC
LIA396	76719.06	456755.4	10330.58	31	AC
LTA397	104427.4	615658.9	13906.55	35	AC
LTA398	75413.65	440324.7	9933.25	33	AC
174200	70127 42	405621 7	01/9 5/0	/2	٨٢
LIASSS	/013/.42	403021.7	5148.545	45	AC
LTA400	86306.08	494436.9	11139.32	37	AC
LTA401	109034.3	618841.8	13925.9	48	AC
LTA402	91297.05	513414	11547.63	52	AC
170/02	70702 02	440107.0	0033.25	37	٨٢
	70702.03	-++0107.5	0010.00		
L1A404	60080.73	370168	8343.93	30	AC
LTA405	60771.77	370645.5	8343.93	24	AC
LTA406	84877.23	512503.1	11546.55	55	AC
170407	88791 24	530857 7	11926 17	/1	٨٢
	70600.07	530037.7	11320.17	41	AC
LIA408	79688.87	500074.1	11118.94	69	AC
LTA409	60457.7	375533	8340.864	55	AC
LTA410	75707.97	465536.8	10344.59	62	AC
ΙΤΔ411	41226 51	250991 9	5566 736	42	۵۲
	442740.31	230331.3	15444.25	72	
LIA412	113/19.4	6/3283.7	15111.27	53	AC
LTA413	93791.18	549962.5	12328.67	42	AC
LTA414	76460.7	444086.5	9946.725	56	AC
170/15	927/0 05	523585 0	11030 70	58	۸٢
	52740.05	100050	11959.79	50	
LIA416	8/478.78	498650.1	11147.19	65	AC
LTA417	39655.95	247354.6	5561.934	41	AC
LTA418	63040.45	389200.2	8745.198	57	AC
174410	110000 7	726250.0	16205 61	67	۸۲
LIA419	110035./	720239.8	10295.01	02	AL
LTA420	117251.6	709455.6	15897.4	68	AC
LTA421	145245.6	870197.1	19479.07	70	AC

LTA422	101901.5	604583.2	13516.39	64	AC
174423	106050 3	623160.8	13918 34	61	AC
	100050.5	023100.0	13510.54	61	
LIA424	/0447.07	410028.6	9150.159	61	AC
LTA425	89778.87	517651.9	11547.94	59	AC
174426	53188 41	303837.6	6771 338	48	AC
	00001.01	503037.0	0771.550		AC
LIA4Z7	92891.81	568880.7	12/12.29	89	AC
LTA428	129174.1	783211.4	17486.26	66	AC
170429	130622.1	784211 7	17489 65	74	۵C
	130022.1	/84211./	17485.05	/4	Ac
LTA430	90047.7	535371.9	11930.82	71	AC
LTA431	100138.4	589659.3	13129.61	64	AC
174/22	80107.05	552278 2	12210 56	71	٨٢
	85107.55	552578.5	12310.30	71	AC
LTA433	98850.14	606607.3	13513.3	74	AC
LTA434	99968.98	607380.3	13510.68	73	AC
174/25	11621 20	250/16 1	5566 946	41	٨٢
EIA455	41024.35	230410.1	5500.540	41	Ac
LTA436	48097.23	286553.6	6364.88	42	AC
LTC218	133884.3	702015.8	15576.29	95	RC
170220	135265 9	682190.1	15575 7	80	BC
LICZZO	133203.5	082150.1	15575.7	80	ne
LTC221	112259.4	560014.3	12794.05	80	RC
LTC222	117433.3	699207.7	15914.16	82	RC
170223	136710.6	805109	1830/ 0/	80	BC
LICZZS	130/10.0	803105	18504.04	80	ne
LTC224	126139.6	735841.7	16724.4	76	RC
LTC225	119581.3	725070.5	16676.27	83	RC
11(32)	331673 9	1078808	13366 63	127	RC.
LICJ24	331023.8	1328838	45500.05	137	ne -
LTC325	282117	1719057	38550.13	120	RC
LTC326	250340.8	1508893	33793.45	125	RC
170327	204060	1175553	26679 /	79	BC
L1C327	204000	11/3333	20079.4	73	ne -
LTC328	64440.17	384515.4	8752.7	29	RC
LTC329	229313.7	1266895	29304.02	101	RC
170332	377731 7	1920089	12916 31	137	BC
10352	522251.7	1920085	42340.31	157	
LTC333	231276.4	1395367	31026.92	131	RC
LTC334	331468.1	1863905	42233.79	139	RC
110335	426261.8	2349814	53377 16	164	BC
210000	120201.0	2313011			
LIC336	126559.6	//8592.2	17484.28	/1	RC
LTC337	183701.4	1022769	23654.63	71	RC
170338	175833 3	986863.8	22811 63	65	BC
170420	113033.5	640760.2	14040.00	53	
LIC439	11/3/4.2	640769.3	14848.66	52	RC
LTC440	235287.1	1281321	29778.71	118	RC
LTC441	51981.44	276539.9	6433,904	25	BC
170442	215201 7	1174552	27451.20	100	
LIC442	215301.7	1174552	27451.26	100	RC
LTC443	163608.5	940741.1	21580.56	91	RC
LTC444	193266.5	1097179	25177.32	110	RC
LTCAAE	107105.0	1197240	2662E 2E	120	PC
210445	197105.9	110/349	20033.23	130	ne ne
LTC446	268073.4	1576578	35406.07	160	RC
LTC447	217770.5	1301986	29041.44	148	RC
170448	232660 5	1359597	30266 54	148	BC
	232000.5	1353537	35200.34	140	
L1C449	19/98/.6	1158173	25868.31	118	KC
LTC450	286870.8	1685217	37796.32	172	RC
LTC451	169994.7	1018264	23045.14	74	RC
170452	152077.2	014000 8	2000110	07	
LIC432	153977.2	914009.8	20001.10	97	RC
LTD323	389739.4	2296595	51696.97	147.32	RC
LTD330	560015.4	3044887	69975.67	180.5	DDH
170221	E27042 2	201020E	64242.04	109	РОЦ
10331	527045.5	2010203	04342.04	190	
LTD456	21558.08	121912	2797.48	5.14	DDH
RAWB0005	188404.6	1068007	23891.58	60	RC
RAW/B0007	177684.2	1029529	23486.6	59	BC
	770424	1023323	104064-0	4004	
KBDD0001	//8124	4670217	104961.9	126.1	DDH
RBDD0002	734354.7	4167149	93927.06	123.6	DDH
RBGC0001	89874 36	524110.8	11939 01	30	RC
	00714.30	524110.0	11000.01		
RBGC0002	89714.34	524097	11938.47	30	RC
RBGC0003	89558.82	524096.6	11938.59	30	RC
RBGC0004	89265 93	524095 1	11937 75	30	RC
DDCCOOCT	0010111	52 1000.1	14037.30		
KBGC0005	89104.14	524095.6	11937.39	30	KC
RBGC0006	88962.75	524093.5	11937	30	RC
RBGC0007	90010.41	523936.4	11939.91	30	RC
PPCCOOO	80863.06	532027 0	11020 72	20	DC
NBGC0000	03002.00	523331.0	11333.13	30	ne

RBGC0009	89707.86	523933	11939.58	30	RC
RBGC0010	89554.95	523935.3	11941.02	30	RC
BBCC0011	00411.4	522027.0	11030 7	20	DC.
REGCOUII	89411.4	523937.8	11939.7	30	RC
RBGC0012	17850.93	104788.3	2387.748	6	RC
PBCC0012	80100 51	522020 8	11029 5	20	PC
RBGC0015	89109.34	525555.6	11938.5	30	Ke
RBGC0014	88961.19	523936.2	11936.94	30	RC
RBGC0015	90011.13	523788.7	11940.72	30	RC
	00011110		110 1000 1		
RBGC0016	89862.24	523794.7	11939.82	30	RC
RBGC0017	89710.26	523795.1	11941.44	30	RC
BBCC0019	80564.46	F33709	11052.19	20	DC.
REGCOUIS	89504.40	523798	11952.18	30	RC
RBGC0019	89412.93	523801.9	11943.99	30	RC
RBGC0020	89271 48	523800 7	11940 96	30	BC
NDGC0020	85271.48	525800.7	11540.50	50	inc.
RBGC0021	89114.73	523801.6	11938.71	30	RC
RBGC0022	74129.58	436503.2	9947.325	25	RC
BBCC00000	00011.01	522640.2	11020.07	20	20
RBGC0023	90011.31	523648.3	11939.07	30	RC
RBGC0024	89856.09	523649.9	11942.4	30	RC
PRCC002E	90714 07	E226E4 1	11052.24	20	PC
RBGC0025	89714.07	525054.1	11932.24	50	NC NC
RBGC0026	90323.52	522896.8	11986.29	30	RC
RBGC0027	90167.04	522884.6	11994 75	30	BC
	50107.01	522001.0	1100 1	30	
RBGC0028	90168.9	523052.1	11980.47	30	RC
RBGC0029	90155.28	523193.1	11958.84	30	RC
PRCC0020	00152.2	5222/18 8	110/1 08	20	PC
RBGC0030	90133.3	525548.8	11941.08		Ke
RBGC0031	90164.31	523500.9	11941.65	30	RC
RBGC0032	89558.79	523648	11966.07	30	RC
BBCC0033	80406.87	522652.2	11000 40	20	DC.
KBGC0033	89406.87	523653.2	11960.46	30	RC
RBGC0034	89265.21	523652.8	11951.07	30	RC
RBGC0035	89115.39	523651.7	11942.07	30	RC
	000001 07	523645 5	11011 60	20	
RBGC0036	88961.97	523645.5	11941.68	30	RC
RBGC0037	89856.75	523501.4	11953.26	30	RC
RBGC0038	89716 74	523499	11966 22	30	BC
	00710.74	525455	11500.22	50	
RBGC0039	89563.05	523506.3	11972.82	30	RC
RBGC0040	89262.12	523506.4	11963.73	30	RC
PBGC0041	90111 12	522507 7	11052 25	20	PC
KBGC0041	89111.13	525507.7	11955.55	30	Re
RBGC0042	90011.43	523348.1	11949.75	30	RC
RBGC0043	89859.78	523339	11972.01	30	RC
PBGC0044	80716.08	522212 2	11082 11	20	PC
KBGC0044	89710.98	525542.5	11983.11		Ke
RBGC0045	89562.87	523343.9	11980.5	30	RC
RBGC0046	89411.61	523344.7	11974.53	30	RC
PPCC0047	20260 EE	E22244 Q	11064.97	20	PC
RBGC0047	89200.05	JZ5544.6	11904.87	30	Ke
RBGC0048	89994.87	523194.7	11978.55	30	RC
RBGC0049	89860.2	523195.3	11986.29	30	RC
BBCCOOFO	80700 84	522104.8	11080 41	20	DC
RBGC0050	89709.84	523194.8	11989.41	30	RC
RBGC0051	89560.65	523193.9	11983.59	30	RC
RBGC0052	89409.57	523192.7	11971.2	30	RC
	00254.05	522404 6	11052 54	20	
KBGC0053	89254.05	523191.6	11952.51	30	RC
RBGC0054	90009.21	523053.2	11990.97	30	RC
RBGC0055	89867.16	523044.8	11993.64	30	RC
PROCODEC	00711 61	E22044.0	11000.30	20	DC
RBGC0056	89711.61	523044.9	11989.38	30	RC
RBGC0057	89557.02	523040.5	11978.43	30	RC
RBGC0058	89413.62	523042.1	11965.44	30	RC
DDCC0050	00011.25	522004.2	11004.55	20	
KBGC0059	90011.25	522891.3	11994.66	30	ĸĊ
RBGC0060	89860.92	522887.5	11991.36	30	RC
RBGC0061	89716.68	522894.1	11984.88	30	RC
	00567.40	522004.2	11070.55	20	
KBGC0062	89567.49	522894.2	113\0.66	30	RC
RBGC0063	89405.82	522895.6	11955.15	30	RC
RNRC0002	220744 7	1404221	30987.37	173	RC
DNDC0002	107705.0	1453457	25307.37	455	
KINKC0003	187705.9	1152157	25448.77	155	RC
RPP001	239404.4	1389865	31977.12	80	RC
RPP002	220200	137/007	31571 56	79	RC
ATT 002	233333	10/4007	31371.30	75	
RPP003	230106.7	1307748	29973	75	RC
RPP004	226766.3	1275251	29068.6	73	RC
RPP005	251698.8	1400208	31916	80	RC
AFF 003	2010/0.0	190200	31310		
RPP006	203945.9	1247965	28210.43	/1	RC
RPP007	206709	1249902	28210.43	71	RC
RPPOOR	236273 5	1410650	31791 44	80	RC
				~~	

RPP009	239528	1412912	31809.52	80	RC
RPP010	242875.6	1415222	31821.6	80	RC
PPD011	246027.2	1/17/11	21929 /	80	PC
RFFOIL	240037.2	141/411	51656.4	80	
RPP012	249355	1419692	31854.24	80	RC
RPP013	252593.7	1421912	31856.88	80	RC
BBC0022	89341 37	496727 3	11545 13	29	RC
PRC0022	400004.5	602062.3	12054.45	25	RC RC
RRC0028	106684.5	603063.7	13954.15	35	RC
RRC0029	107163.1	603034.2	13967.66	35	RC
RRC0030	101706.8	568579.5	13190.3	33	RC
DDC0027	102246.7	F80067 1	12597.76	24	DC
KKC0037	102246.7	589067.1	13587.76	34	ĸc
RRC0038	87774.47	502445	11589.56	29	RC
RRC0039	94430.25	537089.2	12388.84	31	RC
BBC0040	98158 27	554415.6	12788 48	32	BC
RRC0040	05770.04	537413.0	12700.40	52	NC
KKC0041	95770.84	53/129.2	12388.84	31	RC
RRC0042	99614.98	554453.9	12823.9	32	RC
RRC0043	109656.8	606417.8	14029.71	35	RC
BBC0044	10/058 5	571746 7	13227 36	33	BC.
	104030.5	571740.7	13227.30	55	
RRC0045	104602.7	571779.3	13233.63	33	RC
RRC0046	116871.2	697281.3	15913.52	40	RC
RRC0047	117769	697227.2	15915.84	40	RC
PPC0048	119646	607274 2	15020.08	40	PC
KKC0048	118040	037274.3	13320.08	40	RC .
RRC0049	119485.4	697273.6	15974.68	40	RC
RRC0050	120305.6	697275.4	15986.08	40	RC
RRC0051	118126.6	679855.1	15585.96	39	RC
DDC0053	113200.0	645010.2	14796 69	27	DC
RRC0052	112800.9	645010.2	14780.08	37	RC
RRC0053	107388.4	610119.3	13987.4	35	RC
RRC0054	111173.4	627523.1	14387.04	36	RC
RRC0055	105630.8	592636.5	13587.76	34	RC
PRCOOFC	100304.2	50205010	12507.70	24	nc nc
RRC0056	106284.2	592651.9	13587.76	34	RC
RRC0057	113101.2	627516.5	14387.04	36	RC
RRC0058	114739.7	700966	15902.56	40	RC
BBC0059	115602.4	700915 7	15906 48	40	RC
	115002.4	700313.7	15500.40	+0	
RRC0060	116431.6	700963.4	15907.84	40	RC
RRC0061	117252.5	700974.1	15912.92	40	RC
RRC0062	118087.8	700959.6	15923.16	40	RC
RRC0063	119074.4	700936.6	15914.24	40	RC
PR60064	110042.1	701001.0	15004.04	10	nc nc
RRC0064	119843.1	701001.9	15894.04	40	RC
RRC0065	111589.6	648459.9	14733.4	37	RC
RRC0066	106253.2	613429.4	13937	35	RC
RRC0067	97801.57	560876.3	12742.4	32	RC
DDC00C8	000200	500004.0	12742 4	22	nc nc
RRC0068	98379.65	560884.6	12742.4	32	RC
RRC0069	95864.37	543360.5	12344.2	31	RC
RRC0070	99528.42	560903.6	12742.4	32	RC
RRC0071	96963.44	543387.8	12344.2	31	RC
PPC0072	76400.05	421621 7	0084.35	25	PC
RRC0072	70490.95	451021.7	9964.25	25	
RRC0073	/3919.81	414360.5	9619.608	24	RC
RRC0074	71293.54	397096.7	9240.641	23	RC
RRC0075	31196.12	172649	4025.96	10	RC
RRC0076	31300 07	172645 0	4028.25	10	RC
DDC0077	31555.57	470000	1020.23	10	
RRC0077	31599.36	172650	4034.58	10	RC
RRC0078	31780.54	172633.9	4034.56	10	RC
RRC0079	31999.88	172648.7	4040.24	10	RC
BBC0080	32199 02	172647 1	4037 83	10	BC
PROPAGA	32300 45	172017.1	402.4	10	
KKC0081	32399.45	172646.4	4024	10	RC
RRC0082	69922.19	397550.9	9191.72	23	RC
RRC0083	76502.2	432127.9	9977.275	25	RC
BRC0084	73920 82	414854 2	9603 792	24	RC
RTC0004	13320.02	414004.0	5005.752	24	
RRC0085	68201.74	380276.1	8819.844	22	RC
RRC0086	31205.97	172847.8	4014.19	10	RC
RRC0087	31403.24	172850.5	4015.84	10	RC
BDCUU00	31602 17	172950 7	1021 16	10	DC
NRCUU88	51003.17	1/2000./	4021.40	10	RU
RRC0089	31799.33	172849.9	4021.31	10	RC
RRC0090	32036.52	172845.4	4031.09	10	RC
RRC0091	32200.22	172851	4034.61	10	RC
DDC0003	22200.22	173946.0	4027.44	10	
KKC0092	32397.79	1/2840.9	4027.11	TÜ	ĸL

RRC0093	54355.68	311491.8	7193.52	18	RC
RRC0094	63882.29	363393.8	8392.44	21	RC
BBC0095	70375 29	398008 7	9191 72	23	BC
PROPAGE	70070.20	445242.7	0504.00	23	ne RC
RRC0096	73910.52	415313.7	9591.36	24	RC
RRC0097	74400.91	415317.3	9612.648	24	RC
RRC0098	31203.53	173048.6	4008.28	10	RC
RRC0099	31/01 26	173050 /	1010 53	10	RC
	51401.20	175050.4	4010.55	10	
RRC0100	31597.57	173047.7	4010.16	10	RC
RRC0101	31801.66	173050.8	4013.58	10	RC
RRC0102	32003.53	173049.1	4021.43	10	RC
PPC0102	22108 22	172049	4020 14	10	PC
KRC0103	32138.22	173048	4030.14	10	RC .
RRC0104	71755.42	415804	9591.36	24	RC
RRC0105	31898.7	173249.4	4012.86	10	RC
RRC0106	32094.74	173248.6	4021.89	10	RC
PPC0107	74502.2	122616.2	0061 125	25	PC
KKC0107	74502.5	433010.3	9901.125	25	RC .
RRC0108	68999.75	398935.3	9191.72	23	RC
RRC0109	60407.02	346898	7992.8	20	RC
RRC0110	54709.49	312208.9	7193.52	18	RC
PPC0111	52017 72	204862.1	6702 99	17	PC
	52017.72	294802.1	0793.88	1/	RC .
RRC0112	55446.59	312203.9	7193.52	18	RC
RRC0113	68194.74	381591	8792.08	22	RC
RRC0114	31199.06	173451.9	4009.85	10	RC
RRC0115	31308 2	173// 8 8	4010 21	10	RC
RACOIIS	51558.2	173440.0	4010.21	10	
RRC0116	31598.23	173448	4011.35	10	RC
RRC0117	31799.97	173449.1	4013.53	10	RC
RRC0118	74503.3	434145.4	9957.25	25	RC
PRC0119	7/996 68	13/153 1	9991 225	25	RC
	74550.00	454155.1	0101 72	25	
RRC0120	69457.31	399422.2	9191.72	23	RC
RRC0121	57758.04	329954.4	7593.16	19	RC
RRC0122	58141.22	329948.6	7593.16	19	RC
RRC0123	15399 02	86833.06	1998 2	5	RC
RRC0125	15555.02	456304.0	1550.2	5	NC DC
RRC0124	27897.98	156291.8	3596.76	9	RC
RRC0125	31198.43	173659.8	3998.85	10	RC
RRC0126	31397.14	173659.6	4012.42	10	RC
RRC0127	31597 91	173659 2	4014 56	10	RC
DDC0120	00200.00	521615.0	4014.30	10	DC
RRC0128	89398.68	521615.9	11944.2	30	RC
RRC0129	89996.91	521605.2	11984.58	30	RC
RRC0130	84562.69	486830.4	11189.92	28	RC
RRC0131	82073.9	469451.2	10790.28	27	RC
PPC0122	E0147.07	220251.7	7502.16	10	PC
KRC0132	56147.87	550551.7	7595.10	19	RC .
RRC0133	12319.15	69548.08	1598.56	4	RC
RRC0134	12398.77	69548.38	1598.56	4	RC
RRC0135	24959.54	139095.9	3197.12	8	RC
BBC0126	21200.22	172970.0	2007.20	10	RC RC
KKC0130	51599.25	1/38/0.9	3997.29	10	
RRC0137	31598.72	173870.9	4010.65	10	RC
RRC0138	89400.39	522277.7	11942.52	30	RC
RRC0139	89997.9	522264.7	11973.03	30	RC
RRC0140	90602 82	522268 7	11977 65	30	RC
DDC04.64	004.02.02	522200.7	11500 50		
RKC0141	08105.34	504863.1	11289.20	29	KL
RRC0142	18357.45	104452.7	2397.84	6	RC
RRC0143	24637.51	139272.6	3197.12	8	RC
RRC0144	18599.66	104453.9	2397.84	6	RC
PDC014F	20070 10	156670.2	2506 76	0	DC
KKCU145	20079.19	150079.5	5590.70	9	nc.
RRC0146	21979.34	121863.5	2797.48	7	RC
RRC0147	25276.62	139271.3	3197.12	8	RC
RRC0148	41084.99	226589.9	5195.32	13	RC
PPC01/0	89901 90	572/06 E	11026.99	20	PC
RRC0149	00001.09	525450.5	11950.08	50	
RRC0150	89402.28	523496.1	11972.82	30	RC
RRC0151	90004.2	523500	11942.37	30	RC
RRC0152	90593.07	523494	11945.7	30	RC
PPC01F2	30516.09	226840.2	5105 22	12	PC
RRC0155	23210.38	220849.2	5195.32	15	ĸu
RRC0154	33664.37	191949.2	4396.04	11	RC
RRC0155	30798.55	174499.5	3996.4	10	RC
RRC0156	37195.04	209400.2	4795.68	12	RC
PPC0157	20000 17	1570/0 6	3506 76	0	PC
KKC0137	20000.47	137049.0	3390.70	9	nc nc

RRC0158	31399.77	174496.4	3996.4	10	RC
RRC0159	47398.16	261755.3	5985.525	15	RC
	00000 51	201733.3	11001.6	10	
RRC0160	88209.51	524110.4	11934.6	30	RC
RRC0161	88793.13	524101.6	11935.32	30	RC
RRC0162	89400.03	524101.2	11936 91	30	RC
DD00462	00000.034	52 1101.2	11000.01	20	
RRC0163	89996.34	524098.4	11940.39	30	RC
RRC0164	45296.48	262050.3	5970.81	15	RC
RRC0165	39517 99	227110	5195 32	13	RC
	55517.55	227110	5155.52	15	
RRC0166	30597.7	1/4/00.3	3996.4	10	RC
RRC0167	30800.41	174698.6	3996.4	10	RC
RRC0168	31000.04	174700 1	3996 /	10	BC.
	51000.04	174700.1	5550.4	10	
RRC0169	24960.41	139760.3	3197.12	8	RC
RRC0170	34537.45	192171.4	4396.04	11	RC
RRC0171	87612 45	524695 7	11032 32	30	RC
Inteol/1	0/012.43	524055.7	11552.52	50	NC .
RRC0172	88197.54	524706.9	11933.82	30	RC
RRC0173	88793.73	524701.4	11934.09	30	RC
BBC0174	80302.2	524702 4	11936 82	30	BC.
	05552.2	524702.4	11550.82	50	
RRC0175	45004.11	262352.4	5968.725	15	RC
RRC0176	45299.22	262348.1	5971.77	15	RC
RRC0177	45603 32	262348.9	5964 81	15	RC
	45005.52	202348.5	5504.81	15	NC .
RRC0178	33661.09	192391.4	4380.2	11	RC
RRC0179	24641	139919.9	3185.6	8	RC
RRC0180	24801 12	139918 /	2125 6	8	RC
ANCO100	24001.12	133310.4	3103.0	o	
RRC0181	24962.81	139919.6	3185.6	8	RC
RRC0182	34540.46	192389.2	4380.2	11	RC
RRC0183	8700// 17	525304 5	11032.2	30	RC
Inteo 185	87004.17	525504.5	11552.2	50	NC .
RRC0184	87611.31	525304.1	11931.72	30	RC
RRC0185	88198.41	525295.1	11932.59	30	RC
BBC0186	88805 1	525294 3	1193/ 27	30	BC.
	00000.1	525254.5	11554.27	50	
RRC0187	44699.19	262648.9	5968.2	15	RC
RRC0188	45000.8	262651.5	5968.86	15	RC
RRC0189	45295 14	262653	5970 27	15	RC
	15255.11	202033	5570.27	10	
RRC0190	39517.61	227629.5	5176.6	13	RC
RRC0191	30601.04	175099.3	3982	10	RC
RRC0192	21560 93	122570.8	2787 4	7	BC
DDC0402	21300.55	122570.0	2707.4	7	
RRC0193	21702.09	122567.5	2787.4	/	RC
RRC0194	21840.29	122568.9	2787.4	7	RC
RRC0195	86394.33	526349.4	11926.83	30	RC
BBC010C	80000 70	5263 1511	11027.00	20	nc nc
RRC0196	86996.79	526346.9	11927.88	30	RC
RRC0197	31399.25	175100.2	3982	10	RC
RRC0198	87603.48	526359.7	11927.25	30	RC
PPC0100	99106 67	E362E1 2	11020 44	20	PC
KKC0155	88190.07	520351.5	11929.44	50	KC .
RRC0200	44402.96	263200.7	5961.21	15	RC
RRC0201	44707.91	263177.9	5959.95	15	RC
RRC0202	39004 23	228088 3	5165 20	13	RC
DDCCCCC	22222.20	40000.0	4070.00	10	
RRC0203	33223.29	192993.8	4370.63	11	RC
RRC0204	27364.48	157902.5	3575.97	9	RC
RRC0205	24479.24	140362 1	3178.64	8	RC
PRODOC	21561.2	100014.0	2701 21	7	
RRC0206	21501.2	122814.8	2781.31	/	RC
RRC0207	21700.57	122816.2	2781.31	7	RC
RRC0208	24960.71	140359.9	3178.64	8	RC
PPC0200	21207.04	175449.0	2072 2	10	PC
KKC0209	51597.94	175448.9	3975.5	10	RC .
RRC0210	31798.36	173662.9	4014.03	10	RC
RRC0211	31999.67	173448.8	4018.03	10	RC
RRC0212	65992 76	380716.9	8792.08	22	BC.
	00000	170.110.5	0702.00		
RRC0213	31199.42	172449.6	4030.16	10	RC
RRC0262	78955.69	494056.5	11125.24	28	RC
RRC0263	84011 34	529383 7	11917 62	20	RC
NICO203	70005 55	32303.7	11017.02		
RRC0264	/0985.55	441124.7	9933.25	25	RC
RRC0265	71495.3	441129.3	9933.25	25	RC
RRC0266	72006.83	441137 7	9933 25	25	RC
DD00200	101110	CATCAC 2	10000 55	25	
RRC0267	101443.3	61/616.3	13906.55	35	RC
RRC0268	72976.48	441141.4	9933.25	25	RC
RRC0269	79361.34	476420.4	10727.91	27	RC
PDC0370	60071 4	105271 0	0130 50	22	DC
NNC02/U	00071.4	403371.0	3120.23	23	nu

5500074	C1C02.21	2077407	0744.00	22	20
RRC0271	64683.34	38//48./	8741.26	22	RC
RRC0272	93431.3	564006.8	12714.56	32	RC
RRC0273	92797 79	564016 1	12714 56	32	BC
DD 0007.0	52757.75	207755.0	12711.50	32	
RRC0274	63361.12	387755.9	8741.26	22	RC
RRC0275	62919.8	387752.6	8741.26	22	RC
PPC0276	62474 46	287747 5	87/1 26	22	PC
1.0270	02474.40	387747.5	0741.20	22	inc.
RRC0277	76144.13	475869.3	10727.91	27	RC
RRC0278	83996.37	528739.8	11921.91	30	RC
BBC0370	84010 82	F39163 0	11021 04	30	PC
RRC0279	84010.85	528105.9	11921.94	50	RC .
RRC0280	78961.01	492935	11125.24	28	RC
RRC0281	65318.25	404911.8	9138.59	23	RC
PPC0393	92042 97	E10E42 1	11533 57	20	PC
RRC0282	02942.07	510545.1	11322.57	29	RC .
RRC0283	66242.92	404913.2	9138.59	23	RC
RRC0284	63805.79	387306.2	8741.26	22	RC
DDC0395	67151 13	404010.2	0129 50	22	PC
KKC0285	0/131.12	404919.2	9130.39	25	RC .
RRC0286	64674.57	387314	8741.26	22	RC
RRC0287	85837.19	510542.5	11522.57	29	RC
BBC0399	20720.21	228964.2	F16F 20	10	PC
RRC0288	38/38.31	228804.2	5105.29	13	RC
RRC0289	51050.52	299284.5	6754.61	17	RC
RRC0290	39258.53	228868.2	5165.29	13	RC
BBC0301	20518 67	228866.7	F16F 20	10	PC.
KKC0291	59516.07	228800.7	5105.29	15	RC NC
RRC0292	45899.87	264075.5	5959.95	15	RC
RRC0293	46198.82	264077.1	5959.95	15	RC
BBC0304	FF706 2	216886.2	7151 04	10	PC
RRC0294	55790.2	510880.2	7151.94	10	RC .
RRC0295	62403	352104.4	7951.36	20	RC
RRC0296	62808.2	352100.7	7957.9	20	RC
PPC0207	6210E 84	252100 1	7066.9	20	PC
RRC0297	05195.64	552100.1	7900.8	20	RC .
RRC0298	63600.46	352100	7962.88	20	RC
RRC0299	84588.6	527551.8	11919.9	30	RC
BBC0300	72821.20	457210.6	10330 58	26	RC RC
RRC0300	75651.29	437210.0	10550.58	20	RC .
RRC0301	65776.09	404463.3	9138.59	23	RC
RRC0302	66235.29	404453.1	9138.59	23	RC
BBC0303	66607.86	404450.0	0128 50	22	PC .
KRC0303	00097.80	404450.9	9130.39	25	RC .
RRC0304	67160.18	404459.1	9138.59	23	RC
RRC0305	67622.58	404457.6	9138.59	23	RC
RRC0306	68084 53	404463 7	0138 50	23	RC
	00084.33	404405.7	5158.55	25	inc.
RRC0307	23839.31	140682.8	3178.64	8	RC
RRC0308	24006	140678.6	3178.64	8	RC
RBC0309	21128.8	123096 7	2781 31	7	RC
	21150.0	123030.7	2701.51	,	
RRC0310	21279.54	123095.3	2781.31	/	RC
RRC0311	21419.48	123096.3	2781.31	7	RC
RRC0312	21560 57	123096.4	2781 31	7	BC
	24700 74	140604 6	2470 64	2	
RKC0313	24/98./1	140681.6	51/8.04	δ	KL
RRC0314	31201.08	175854	3973.3	10	RC
RRC0315	47100.59	263776.6	5959.95	15	RC
PPC0216	47206.04	262777.0	5077 74	15	PC
ARC0310	+7330.04	203777.9	JJ11.14	1.5	nc
RRC0317	47702.45	263781.8	5973.72	15	RC
RRC0318	84596.91	526959.7	11920.14	30	RC
RRC0319	85194 27	526950.2	11918 1	30	RC
nincos15	000104.27	520550.2	11010.1	30	
RRC0320	82943.05	509389.6	11522.57	29	RC
RRC0321	83518.55	509379.3	11522.57	29	RC
RRC0322	110188 1	667472 4	15098 54	38	RC
PDC0322	70046 40		10727.04		
RRC0323	78846.18	474251.1	10/2/.91	27	KC
RRC0324	105813.4	632315.3	14303.88	36	RC
RRC0325	73999.03	439119.6	9933.25	25	RC
PRODOC	26020.45	1500274	2575.23		
KKCU326	26820.45	158087.1	35/5.9/	9	KC
RRC0327	23999.26	140520.5	3178.64	8	RC
RRC0328	24198.9	140522.2	3178.64	8	RC
PDC0320	24240.00	140530.3	2470.04		
KKC0329	24319.68	140520.2	3178.64	ð	ĸĊ
RRC0330	21420.18	122957.7	2781.31	7	RC
RRC0331	24636.19	140515.8	3178.64	8	RC
PRODOC	21600.60	1220525	2701.24	7	
RRC0332	21033.00	122953.5	2/01.31	/	ĸL
RRC0333	21838.73	122955.5	2781.31	7	RC
RRC0334	34536.35	193215	4370.63	11	RC
PRODOC	47270 54	262475 4	E072.07	- 15	
KKCU335	4/3/9.51	2034/5.4	5972.97	15	ĸĊ

RRC0336	37805.39	210297.4	4778.4	12	RC
RRC0337	47406.36	262572	5972.925	15	RC
RRC0338	47401.16	262271	5972.88	15	RC
PPC0220	21700 56	172850 2	4010.2	10	PC
RRC0333	31735.30	173030.2	4010.2	10	NC DC
RRC0340	31998.48	1/3651.3	4016.02	10	RC
RRC0341	32200.05	173449.8	4023.84	10	RC
RRC0342	32297.13	173253.1	4027.18	10	RC
RRC0343	32400.14	173050.5	4021.52	10	RC
RRC0344	32505.07	172853.1	4021.09	10	RC
RRC0345	89397 6	520953 3	11949 09	30	RC
DDC0346	80200 58	520535.5	11044.17	20	DC
KKCU346	89399.58	521549.7	11944.17	30	RC
RRC0347	88799.7	522163.6	11940.36	30	RC
RRC0348	87001.44	524550.2	11932.32	30	RC
RRC0349	85801.17	526355.3	11927.67	30	RC
RRC0360	186505.4	1114794	25045.65	76	RC
RRC0361	200568.6	1187105	26644.56	80	RC
RR(0362	187573.9	1099880	24656 72	75	RC
DDC03C2	210/0/00	1055000	2000/	,5	nc nc
KKCU363	219466	1345680	30204	88	KL
RRC0364	264025	1596030	35767.44	106	RC
RRC0366	209854.9	1244804	27830.67	82	RC
RRC0367	233354.6	1370964	30620.36	94	RC
RRC0368	258408	1566391	34971.82	88	RC
RRC0369	237556	1425875	31798 96	80	RC
PPC0270	199276 2	1109172	25021 70	63	PC
RRC0370	100370.2	1100172	25031.75	03	NC DO
RRC0371	236810.6	1413603	31/97.52	80	RC
RRC0372	245129.7	1448909	32597.71	82	RC
RRC0373	241577.2	1413655	31814.96	80	RC
RRC0374	243697.6	1415865	31823.44	80	RC
RRC0375	132008.3	746915.4	17184.52	43	RC
RRC0376	131144 5	746890 2	17184 52	43	RC
PPC0377	127261 7	782540.1	17092.8	15	PC
RRC0377	13/201./	762549.1	1/905.0	45	RC DC
RKC0378	149446	853076.3	19582.36	49	RC
RRC0379	145438.5	835674.7	19182.72	48	RC
RRC0380	166103.1	958609.5	21965.63	55	RC
RRC0381	165535.8	959767.4	21891.43	55	RC
RRC0382	166648.3	959736.4	21939.83	55	RC
RRC0383	165541 5	960852.4	21894 35	55	RC
PPC0394	164462	061061.6	21004.00		
RRC0304	104405	901901.0	21005.75	55	NC DO
RKC0385	165519	961966.1	21890.28	55	RC
RRC0386	166672.1	961931.8	21898.19	55	RC
RRC0387	241596.4	1415991	31821.52	80	RC
RRC0388	240214.2	1380586	31038.93	78	RC
RRC0389	213853.3	1270770	28643.33	72	RC
RRC0391	138142.3	782550.1	17983.8	45	RC
RR(0392	161114.6	923800 3	21180.92	53	RC
DDC0302	166650 0	060951 2	2100.52	55	
RRC0333	100050.9	500051.3	21910.79	55	
KRC0394	1/8/51.7	1033062	23468.02	59	RC
RRC0395	179411.7	1050615	23874.96	60	RC
RRC0396	202151.9	1210981	27423.64	70	RC
RRC0397	204913.3	1210978	27415.77	69	RC
RRC0398	198680.5	1158305	26223.78	66	RC
RRC0399	203320.1	1193407	27018.44	68	RC
RRC0400	206501.9	1228520	27817.65	70	RC
DDC0401	103660.6	1120452	25050.02	, c	
	192009.0	1139452	20007.93	60	KL
RRC0402	194177.4	1139456	25837.43	65	RC
RRC0403	186363.1	1086870	24688.4	62	RC
RRC0404	180584.2	1050589	23881.62	60	RC
RRC0405	188385.6	1106922	25031.79	63	RC
RRC0406	193032.3	1142044	25826.45	65	RC
RRC0407	188795.8	1124464	25429 12	64	RC
	100/33.0	11/2060	25725.12 25026 AF	65	
RRC0408	190448.7	1142008	25820.45	60	KL
RRC0409	184557.1	1108179	25031.79	63	RC
RRC0410	185838.8	1108181	25031.79	63	RC
RRC0411	187101.4	1108161	25031.79	63	RC
RRC0412	209560.1	1253231	28220.16	71	RC

RRC0413	176993.7	1057763	23839.8	60	RC
RRC0414	188788	1126882	25429.12	64	RC
RRC0415	172774.6	1040144	23442.47	59	RC
RRC0416	184547 9	1111836	25031 79	63	RC
RRC0/17	190484 3	11//528	25826 45	65	RC
RRC0/18	187224.0	1109/13	25020.45	63	RC RC
RRC0410	176511 2	1020042	23031.73	E0	RC BC
RRC0419	1/0311.5	1059042	23442.47	59	RC DC
RRC0420	166256.7	987269.9	22250.48	56	RC
RRC0421	203330.9	1198820	27018.44	68	RC
RRC0422	210698.4	1234091	27813.03	70	RC
RRC0423	234771.5	1376701	31012.18	78	RC
RRC0424	233201	1376754	31040.88	78	RC
RRC0425	68155.61	421079.4	9542.832	24	RC
RRC0426	217709	1236978	27854.96	81	RC
RRC0427	199968	1148518	25856.03	77	RC
RRC0428	213503	1236893	27843.41	80	RC
RRC0429	200300.1	1185864	26636.32	78	RC
RRC0430	198494.7	1187779	26630.89	78	RC
RRC0431	193236.8	1168243	26227.67	79	RC
RRC0432	201682.2	1170248	26252.62	78	RC
RRC0433	199612.8	1172205	26244.64	78	RC
RRC0434	200600 5	1189896	26640 67	78	RC
RRC0435	231878.7	1403030	31393 18	90	RC
RRC0435	198777 3	1101080	26633.84	79	RC RC
RRC0430	200006 5	1102047	20035.04	75	RC BC
RRC0437	200990.5	1193947	20039.07	78	RC
RRC0438	209071.4	1229918	27444.06	//	RC
RRC0439	202859.8	1230272	27422.46	84	RC
RRC0440	199912.2	1211095	27023.2	84	RC
RRC0441	219803.6	131/9/8	29411.89	90	RC
RRC0442	186048.7	1104246	24652.38	78	RC
RRC0443	166518.4	978448.5	21873.39	72	RC
RRC0444	171081.5	994038	22277.42	72	RC
RRC0445	169668.1	975131	21885.55	72	RC
RRC0446	157229.4	921914.8	20683.42	66	RC
RRC0447	167609.2	992883.7	22265.82	72	RC
RRC0448	183499.6	1098031	24646.24	78	RC
RRC0449	150984.5	885500.4	19887.4	66	RC
RRC0450	176907.3	1027211	23073.62	78	RC
RRC0451	174142.4	990624.6	22288.28	72	RC
RRC0452	182089.7	1026006	23089.1	78	RC
RRC0453	202874.5	1132206	25482.56	84	RC
RRC0454	163291.2	918824.8	20699.9	68	RC
RRC0455	165780.4	953096.2	21479.04	66	RC
RRC0456	152028.7	882511.2	19899.5	66	RC
RRC0457	185584.3	1138562	25425.98	84	RC
RRC0458	187792.3	1137278	25433.98	84	RC
RRC0459	171993.8	1030671	23055.41	78	RC
RRC0460	173767.2	1030665	23061.96	78	RC
RRC0461	139836.7	810978.8	18296.96	66	RC
RRC0462	177362.8	1031813	23077.33	78	RC
RRC0463	191543.4	1170141	26220.22	78	RC
RRC0464	269554.3	1627490	36557.58	108	RC
RRC0465	194951	1193207	26617.56	84	RC
RRC0466	221218.5	1355072	30191.83	96	RC
RRC0467	200404.7	1224730	27409.42	84	RC
RRC0468	182917 9	1041334	23471.38	72	RC
RRC0460	19/272	1185034	26628 82	84	RC
RRC0435	30600 14	202106 1	1800 006	12	RC
RRC0470	40192.45	208130.1	4809.090	12	RC BC
RRC0471	40105.45	200213.1	4004.040	12	RC
	40670	200232.1	4000.30	12	
DDC0474	40079	207710.2	4001.710	12	
	40190.34	207719.3	4007.092	12	
PPC0470	10/061 0	100/220	4010.012	70	
	174001.8	1004005	240/2.10	/0	
KKC0480	170030.2	1004895	22059.15	12	KU

RRC0481	153486	881561.4	19882.05	66	RC
RRC0482	203234.6	1168791	26262.26	78	RC
RRC0483	174063.6	992873.7	22292.65	72	RC
RRC0484	222100.5	1236945	27868.89	84	RC
RRC0485	191591.3	1172959	26214.28	83	RC
RRC0486	263920.9	1608074	36175.96	96	RC
RRC0487	298970.1	1802286	40598.86	114	RC
RRC0488	184751.4	1040075	23467.9	72	RC
RRC0489	227498.5	1270790	28660.03	84	RC
RRC0490	217991.1	1232661	27845.44	84	RC
RRC0491	84999.43	420004.8	9594.528	24	RC
RRC0492	83961.17	419997.6	9590.496	24	RC
RRC0493	175070	1077870	24245.98	78	RC
RRC0494	224360	1251730	28261.69	84	RC
RRC0495	175375	1082750	24236.58	78	RC
RRC0498	69474.21	397095.1	9161.521	23	RC
RRC0499	69932.1	397091	9172.561	23	RC

Table 4: Rainbow significant assays report in this announcement (cut-off grade of 0.5g/t, 2m of internal dilution)

BHID	FROM	то	LENGTH	AU
LTA339	16	19	3	0.73
LTA341	1	7	6	1.50
LTA342	1	4	3	1.72
LTA342	17	21	4	1.00
LTA343	0	3	3	1.37
LTA343	7	8	1	0.64
LTA343	17	18	1	0.97
LTA344	0	3	3	1.96
LTA345	0	3	3	1.29
LTA345	24	29	5	1.13
LTA346	0	2	2	0.69
LTA346	18	19	1	0.62
LTA348	15	16	1	0.88
LTA348	25	26	1	2.20
LTA349	0	2	2	0.99
LTA349	10	11	1	0.53
LTA349	14	15	1	0.58
LTA349	21	27	6	0.91
LTA350	13	14	1	0.57
LTA350	32	33	1	0.62
LTA351	4	5	1	0.70
LTA351	13	14	1	1.52
LTA352	0	4	4	1.07
LTA352	26	28	2	0.77
LTA353	0	9	9	0.76
LTA353	14	17	3	0.71
LTA353	22	25	3	0.80
LTA354	3	7	4	0.56
LTA355	1	4	3	0.83
LTA357	15	19	4	0.49
LTA361	4	7	3	1.54
LTA362	3	5	2	2.41
LTA363	1	4	3	2.52
LTA363	20	21	1	0.60
LTA363	25	31	6	0.82
LTA364	1	2	1	1.18
LTA364	13	16	3	0.90
LTA364	22	23	1	2.02
LTA364	26	27	1	0.52
LTA365	19	23	4	0.76
LTA366	13	14	1	1.48
LTA367	11	32	21	1.48
LTA369	4	5	1	0.77
LTA370	5	9	4	0.98
LTA370	19	20	1	0.54
LTA371	7	12	5	0.98
LTA372	7	9	2	0.55
LTA373	22	27	5	1.20
LTA377	23	29	6	2.69
LTA378	12	16	4	1.64
LTA378	23	29	6	0.49
LTA379	34	37	3	1.08
LTA380	7	9	2	0.845
LTA381	7	13	6	1.37

LTA382	8	13	5	0.48
LTA383	15	16	1	0.80
LTA384	25	27	2	1.62
LTA386	10	11	1	0.66
LTA386	17	21	4	1.58
LTA386	24	25	1	0.61
LTA386	29	31	2	0.60
LTA386	35	36	1	1.04
LTA387	28	31	3	0.63
LTA388	7	9	2	0.96
LTA388	36	42	6	1.00
LTA389	8	12	4	1.00
LTA390	10	12	2	1.29
LTA390	27	28	1	0.82
LTA391	9	12	3	0.52
LTA391	21	22	1	0.92
LTA391	41	43	2	0.54
LTA391	48	49	1	0.97
LTA392	42	43	1	0.59
LTA393	36	37	1	0.55
LTA394	21	23	2	1.43
LTA395	13	21	8	0.91
LTA396	7	9	2	0.71
LTA396	30	32	2	0.72
LTA396	35	36	1	1.95
LTA397	8	9	1	1.21
LTA397	12	13	1	0.96
LTA397	39	40	1	0.53
LTA398	10	11	1	0.81
LTA400	18	20	2	0.63
LTA401	24	27	3	1.02
LTA401	30	31	1	0.58
LTA401	35	41	6	1.22
LTA401	46	47	1	0.73
LTA402	48	49	1	0.73
LTA403	7	18	11	0.65
LTA404	9	20	11	1.30
LTA405	10	13	3	1.35
LTA405	24	26	2	0.84
LTA407	20	21	1	1.00
LTA407	25	30	5	2.22
LTA407	36	39	3	0.69
LTA408	48	51	3	0.98
LTA410	56	60	4	1.45
LTA412	29	30	1	0.65
LTA412	34	45	11	1.64
LTA412	48	53	5	4.51
LTA413	26	30	4	0.85
LTA413	35	42	7	1.17
LTA415	38	47	9	0.58
LTA419	42	43	1	1.69
LTA419	51	61	10	0.93
LTA420	26	27	1	0.59
LTA420	30	39	3	0.89
		20		1.57

LTA420	59	60	1	0.50
LTA421	34	39	5	7.36
LTA421	43	56	13	1.44
LTA421	65	66	1	0.53
LTA422	38	41	3	1.68
LTA422	47	49	2	2.06
LTA423	48	57	9	1.89
LTA428	41	43	2	0.82
LTA428	46	55	9	0.90
17428	59	60	1	0.50
170428	63	64	1	2.28
17420	30	/3	1	0.98
174429	55	43	4	0.90
LTA 424	50	57	2	0.89
LTA431	55	57	2	0.67
LTA432	56	57	1	3.07
L1A433	51	52	1	0.97
LTA433	58	60	2	1.91
LTC218	67	68	1	0.70
LTC222	12	17	5	2.48
LTC223	20	21	1	1.50
LTC223	24	33	9	1.38
LTC224	34	36	2	0.58
LTC224	61	64	3	0.52
LTC324	30	31	1	0.80
LTC324	40	47	7	2.13
LTC324	120	121	1	0.54
LTC325	29	32	3	0.51
LTC325	47	49	2	0.69
LTC325	57	62	5	0.68
LTC325	68	69	1	0.65
LTC325	73	75	2	10.11
LTC325 LTC326	73 39	75 40	2	10.11 0.90
LTC325 LTC326 LTC326	73 39 53	75 40 54	2 1 1	10.11 0.90 1.15
LTC325 LTC326 LTC326 LTC326	73 39 53 62	75 40 54 69	2 1 1 7	10.11 0.90 1.15 0.44
LTC325 LTC326 LTC326 LTC326 LTC326 LTC326	73 39 53 62 94	75 40 54 69 95	2 1 1 7 1	10.11 0.90 1.15 0.44 0.76
LTC325 LTC326 LTC326 LTC326 LTC326 LTC326 LTC327	73 39 53 62 94 8	75 40 54 69 95 9	2 1 1 7 1 1	10.11 0.90 1.15 0.44 0.76 1.19
LTC325 LTC326 LTC326 LTC326 LTC326 LTC327 LTC327	73 39 53 62 94 8 31	75 40 54 69 95 9 34	2 1 7 1 1 3	10.11 0.90 1.15 0.44 0.76 1.19 2.99
LTC325 LTC326 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327	73 39 53 62 94 8 31 40	75 40 54 69 95 9 34 41	2 1 7 1 1 3 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327	73 39 53 62 94 8 31 40 55	75 40 54 69 95 9 34 41 56	2 1 7 1 1 3 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327	73 39 53 62 94 8 31 40 55 82	75 40 54 99 34 41 56 85	2 1 7 1 1 3 1 1 1 3	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327	73 39 53 62 94 8 31 40 55 82 23	75 40 54 99 34 41 56 85 24	2 1 7 1 1 3 1 1 3 1 3 1 1 3	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329	73 39 53 62 94 8 31 40 55 82 23 35	75 40 54 69 95 9 34 41 56 85 24 36	2 1 7 1 3 1 1 3 1 3 1 3 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329	73 39 53 62 94 8 31 40 55 82 23 35 85	75 40 54 99 34 41 56 85 24 36 86	2 1 7 1 1 3 1 1 3 1 1 3 1 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329	73 39 53 62 94 8 31 40 55 82 23 35 85 85 38	75 40 54 99 34 41 56 85 24 36 86 39	2 1 7 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC322	73 39 53 62 94 8 31 40 55 82 23 35 85 85 38 44	75 40 54 69 95 9 34 41 56 85 24 36 85 24 36 86 39	2 1 7 1 1 3 1 1 3 1 1 1 1 1 1 1 2	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC322 LTC332	73 39 53 62 94 8 31 40 55 82 23 35 82 23 35 85 38 44	75 40 54 99 34 41 56 85 24 36 86 39 46 58	2 1 7 1 1 3 1 1 3 1 1 1 1 1 1 2 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62	75 40 54 99 34 41 56 85 24 36 86 39 46 58 63	2 1 7 1 1 3 1 1 3 1 1 1 1 1 2 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131	75 40 54 99 34 41 56 85 24 36 85 24 36 86 39 46 58 63	2 1 7 1 1 3 1 1 3 1 1 1 1 2 1 1 2 1 1 3	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68	75 40 54 99 34 41 56 85 24 36 86 39 46 58 63 134	2 1 7 1 1 3 1 1 3 1 1 1 1 1 2 1 1 2 1 1 3 1 1 3	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69	2 1 1 7 1 1 3 1 1 3 1 1 1 1 2 1 1 2 1 1 3 1 1 3 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10	75 40 54 99 34 41 56 85 24 36 86 39 46 58 63 134 69 11	2 1 1 7 1 3 1 1 3 1 1 1 1 1 2 1 1 2 1 1 3 1 1 3 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97	75 40 54 99 34 41 56 85 24 36 85 24 36 86 39 46 58 63 134 69 11 99	2 1 7 1 1 3 1 1 3 1 1 1 2 1 1 3 1 1 1 2 1 1 3 1 1 2 1 1 2 1 1 3 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102	75 40 54 69 95 9 34 41 56 85 24 36 85 24 36 86 39 46 58 63 134 69 11 99 103	2 1 1 7 1 1 3 1 1 3 1 1 1 2 1 1 1 3 1 1 3 1 1 1 2 1 1 2 1 1 2 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102 111	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69 11 99 103 112	2 1 1 7 1 1 3 1 1 3 1 1 1 2 1 1 3 1 1 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81 0.53
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102 111 116	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69 11 99 103 112 118	2 1 7 1 1 3 1 1 3 1 1 1 1 1 2 1 1 3 1 1 1 2 1 1 3 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81 0.53 0.68
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102 111 116 25	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69 11 99 103 112 118 27	2 1 1 7 1 1 3 1 1 3 1 1 1 1 2 1 1 3 1 1 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 2 2	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81 0.53 0.68 2.20
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334 LTC334 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102 111 116 25 148	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69 11 99 103 112 118 27 149	2 1 1 7 1 1 3 1 1 3 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81 0.53 0.75 1.81 0.53 0.68 2.20 1.13
LTC325 LTC326 LTC326 LTC326 LTC327 LTC327 LTC327 LTC327 LTC327 LTC327 LTC329 LTC329 LTC329 LTC329 LTC332 LTC332 LTC332 LTC332 LTC332 LTC333 LTC334 LTC334 LTC334 LTC334 LTC334 LTC334	73 39 53 62 94 8 31 40 55 82 23 35 85 38 44 57 62 131 68 10 97 102 111 116 25 148 29	75 40 54 69 95 9 34 41 56 85 24 36 86 39 46 58 63 134 69 11 99 103 112 118 27 149 30	2 1 7 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	10.11 0.90 1.15 0.44 0.76 1.19 2.99 0.50 1.61 1.48 0.55 0.63 0.88 11.50 1.74 0.60 0.94 2.08 1.55 0.93 0.75 1.81 0.53 0.68 2.20 1.13 0.68

LTC337	57	59	2	0.77
LTC337	63	68	5	3.48
LTC338	0	1	1	0.69
LTC338	17	20	3	0.51
LTC338	29	32	3	0.48
LTC439	0	3	3	1.42
LTC442	66	69	3	0.58
1TC443	0	3	3	0.60
1TC443	84	87	3	1.82
170440	3	6	3	0.86
	26	20	2	0.00
	02	06	2	0.50
	53	30	2	1.27
	114	117	2	1.57
LTC446	114	11/	3	7.20
LTC447	63	66	3	0.70
LIC449	84	8/	3	17.20
LTC450	45	54	9	1.70
LTC450	81	84	3	0.88
LTC451	25	27	2	2.78
LTC451	31	32	1	0.98
LTC451	37	38	1	0.56
LTC451	54	57	3	1.90
LTC451	61	62	1	0.67
LTC451	69	71	2	0.94
LTC452	9	11	2	0.86
LTC452	63	64	1	0.83
LTC452	67	70	3	2.59
LTD323	41	43	2	0.87
LTD323	46	47	1	1.00
LTD323	80	82	2	0.82
LTD323	85	86	1	0.70
LTD323	91	94	3	0.54
LTD323	97	98	1	0.54
LTD323	122	123	1	0.55
LTD323	135	136	1	16.30
LTD330	37	38	1	2.45
LTD330	138.5	140.6	2.1	1.68
LTD331	159	167	8	1.82
LTD331	171	181.8	10.8	0.72
LTD331	184.7	185.75	1.05	1.36
LTD456	1	3.25	2.25	1.58
RAWB0007	7	11	4	0.52
RAWB0007	14	27	13	1.05
RAWB0007	30	31	1	1.68
RBDD0001	21	24	3	1.09
RBDD0001	25	31	6	3.01
RBDD0001	41	42	1	3.07
RBDD0001	72	79	7	1.22
RBDD0001	92	93	1	1.28
RBDD0001	98	100	2	1.39
RBDD0002	53	54	1	0.77
RBGC0001	6	10	4	0.35
RBGC0001	13	20	7	1 33
RBGC0001	26	30	4	3 20
RBGC0002	۵	16	7	10.07
RBGC0002	25	26	,	0.70
RBGC0002	12	20	2	0.24
RBGC0003	28	20	1	0.68
	20	25	-	0.00

RBGC0004	17	18	1	0.72
RBGC0004	22	27	5	12.28
RBGC0005	22	25	3	6.66
RBGC0006	19	30	11	2.61
RBGC0007	0	1	1	0.60
RBGC0007	11	18	7	0.57
RBGC0007	24	28	4	1.32
RBGC0008	7	19	12	0.99
RBGC0008	29	30	1	1.26
RBGC0009	17	21	4	1.61
RBGC0010	21	22	1	4.07
RBGC0010	29	30	1	0.66
RBGC0011	22	28	6	6.73
RBGC0013	22	27	5	3.32
RBGC0014	22	30	8	6.73
RBGC0015	10	14	4	1.17
RBGC0015	17	19	2	1.23
RBGC0015	26	30	4	0.96
RBGC0016	4	5	1	0.67
RBGC0016	19	23	4	2.39
RBGC0017	7	8	1	0.51
RBGC0017	17	18	1	0.91
RBGC0017	21	28	7	1.82
RBGC0018	21	27	6	11.44
RBGC0019	15	16	1	0.63
RBGC0019	20	29	9	1.30
RBGC0020	14	15	1	0.62
RBGC0020	22	27	5	2.41
RBGC0021	21	24	3	2.09
RBGC0022	18	26	8	1.72
RBGC0023	7	17	10	0.63
RBGC0023	21	22	1	1.75
RBGC0023	27	29	2	0.77
RBGC0024	18	26	8	0.91
RBGC0025	22	25	3	6.81
RBGC0026	7	19	12	1.23
RBGC0026	23	28	5	1.29
RBGC0027	2	3	1	3.09
RBGC0027	14	28	14	1.27
RBGC0028	7	8	1	0.68
RBGC0028	17	27	10	1.20
RBGC0029	7	21	14	0.70
RBGC0029	28	29	1	0.85
RBGC0030	0	3	3	0.54
RBGC0030	9	15	6	1.14
RBGC0030	18	29	11	1.44
RBGC0031	10	18	8	1.05
RBGC0031	22	26	4	0.84
RBGC0032	20	29	9	13.48
RBGC0033	25	29	4	28.88
RBGC0034	21	30	9	5.13
RBGC0035	17	18	1	0.72
RBGC0035	21	23	2	4.19
RBGC0035	26	28	2	44.88
RBGC0036	20	22	2	2.21
RBGC0037	11	12	1	0.52
RBGC0037	21	29	8	1.18
RBGC0038	19	28	9	0.73

RBGC0039	14	15	1	0.78
RBGC0039	24	28	4	1.32
RBGC0040	14	15	1	0.61
RBGC0040	21	30	9	6.29
RBGC0041	0	1	1	0.87
RBGC0041	20	22	2	5.40
RBGC0041	26	29	3	1.85
RBGC0042	4	5	1	3.92
RBGC0042	18	29	11	0.64
RBGC0043	16	30	14	1.77
RBGC0044	19	30	11	1.79
RBGC0045	13	14	1	0.52
RBGC0045	22	30	8	1.63
RBGC0046	13	14	1	0.92
RBGC0046	21	23	2	1.23
RBGC0046	26	30	4	1.85
RBGC0047	19	30	11	2.28
RBGC0048	16	19	3	2.00
RBGC0048	24	29	5	1.43
RBGC0049	10	11	1	0.54
RBGC0049	18	30	12	2.08
RBGC0050	19	25	6	1 77
RBGC0050	28	30	2	1.77
RBGC0051	12	13	1	0.57
RBGC0051	10	27	8	3.07
RBGC0052	21	27	1	0.76
RBGC0052	21	22	1	14.40
RBGC0052	20	23	1 2	1 00
RBGC0053	17	20	12	0.86
RBGC0054	10	20	13	1.00
RBGC0055	10	20	12	2.60
RBGC0050	20	23	5	2.09
RBGC0057	10	12	1	0.71
RBGC0058	16	20	14	1.04
RBGC0058	10	10	14	0.91
RBGC0059	17	20	12	1.12
RBGC0059	1/	29	12	1.12
RBGC0060	0	12	4	0.50
RBGC0060	18	29	11	1.50
RBGC0061	0	1	1	0.64
RBGC0061	17	22	5	1.16
RBGC0061	29	30	1	10.90
RBGC0062	19	29	10	2.02
RBGC0063	10	11	1	0.72
REGC0063	18	20	2	0.89
RPP001	24	31	7	0.97
RPP002	17	24	7	1.60
RPP002	28	35	7	0.87
RPP002	46	47	1	0.69
RPP002	51	54	3	0.88
RPP003	4	5	1	0.80
RPP004	5	9	4	0.96
RPP004	60	62	2	1.54
RPP004	74	75	1	1.35
RPP005	39	40	1	1.52
RPP007	9	15	6	1.84
RPP007	24	28	4	0.53
RPP007	38	39	1	0.73
RPP007	64	66	2	0.94

RPP008 32 33 1 0.82 RPP008 46 48 2 0.54 RPP008 61 63 2 0.74 RPP009 45 46 1 0.54 RPP010 35 41 6 0.81 RPP010 35 41 6 0.81 RPP011 28 29 1 1.05 RP011 28 29 1 1.03 RPP012 28 29 1 1.03 RPC022 14 15 1 0.60 RRC022 14 15 1 0.60 RRC022 14 15 1 0.82 RRC037 2 7 5 0.86 RRC037 10 12 2 0.77 RRC033 6 7 1 0.66 RRC037 10 12 2 0.77 RRC033 17	RPP008	13	15	2	0.77
RPP008 46 48 2 0.54 RPP008 61 63 2 0.74 RPP009 45 46 1 0.54 RPP009 67 69 2 14.70 RPP010 35 41 6 0.81 RPP010 53 54 1 3.05 RPP011 28 29 1 1.05 RPP011 36 45 9 0.65 RPP012 64 65 1 0.59 RRC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RRC0030 18 19 1 0.82 RRC0037 10 12 2 0.79 RRC0037 10 <th>RPP008</th> <th>32</th> <th>33</th> <th>1</th> <th>0.82</th>	RPP008	32	33	1	0.82
RPP008 61 63 2 0.74 RPP009 45 46 1 0.54 RPP009 67 69 2 14.70 RPP010 35 41 6 0.81 RPP010 53 54 1 3.05 RPP011 28 29 1 1.05 RPP011 36 45 9 0.65 RPP012 28 29 1 1.03 RP012 64 65 1 0.59 RC0028 12 15 3 1.07 RC0028 26 27 1 1.08 RRC0037 10 12 2 0.79 RC0037 10 12 2 0.79 RC0037 10 12 2 0.79 RC0040 6 15 9 0.84 RC0040 1 1 0.77 RC0041 1 1 <t< th=""><th>RPP008</th><th>46</th><th>48</th><th>2</th><th>0.54</th></t<>	RPP008	46	48	2	0.54
RPP009 45 46 1 0.54 RPP009 67 69 2 14.70 RPP010 35 41 6 0.81 RPP010 53 54 1 3.05 RPP011 28 29 1 1.05 RPP011 36 45 9 0.65 RPP011 28 29 1 1.03 RPP012 28 29 1 0.33 RP012 64 65 1 0.59 RC0022 14 15 1 0.60 RC0037 2 7 5 0.86 RC0037 10 12 2 0.79 RC0037 10 12 2 0.79 RC0037 10 12 2 0.79 RC0037 10 12 2 0.77 RC0037 10 12 2 0.77 RC0040 3 <t< th=""><th>RPP008</th><th>61</th><th>63</th><th>2</th><th>0.74</th></t<>	RPP008	61	63	2	0.74
RPP009 67 69 2 14.70 RPP010 35 41 6 0.81 RPP010 53 54 1 3.05 RPP011 28 29 1 1.05 RPP011 36 45 9 0.65 RPP011 48 51 3 0.52 RPP012 28 29 1 1.03 RP012 64 65 1 0.59 RRC0022 14 15 1 0.60 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 10 12 2 0.79 RRC0037 10 12 2 0.77 RRC0038 7	RPP009	45	46	1	0.54
RPP010 35 41 6 0.81 RPP010 44 47 3 0.73 RPP010 53 54 1 3.05 RPP011 28 29 1 1.05 RPP011 36 45 9 0.655 RPP012 28 29 1 1.03 RPP012 64 65 1 0.59 RC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RC0028 26 27 1 1.88 RC0037 10 12 2 0.79 RC0037 16 17 1 0.66 RC0037 10 12 2 0.77 RC0040 3 3 1.69 3 RC0040 23 24 1 0.77 RC0041 11 19 8 1.09 RC0041 24	RPP009	67	69	2	14.70
RP010 44 47 3 0.73 RP010 53 54 1 3.05 RP011 28 29 1 1.05 RP011 36 45 9 0.65 RP011 48 51 3 0.52 RP012 28 29 1 1.03 RP012 64 65 1 0.59 RC0022 14 15 1 0.60 RC028 22 1 1.03 RC0030 18 19 1 0.82 RC037 2 7 5 0.86 RC037 10 12 2 0.79 RC037 16 17 1 0.66 RC038 6 7 1 0.57 RC040 3 3 1.69 RC040 3 3 1.27 RC041 0 1 1 0.77 <t< th=""><th>RPP010</th><th>35</th><th>41</th><th>6</th><th>0.81</th></t<>	RPP010	35	41	6	0.81
RP010 53 54 1 3.05 RP011 28 29 1 1.05 RP011 28 29 1 1.05 RP011 36 45 9 0.65 RP011 48 51 3 0.52 RP012 28 29 1 1.03 RP012 64 65 1 0.59 RC0022 14 15 1 0.60 RC0028 12 15 3 1.07 RC0030 18 19 1 0.82 RC037 2 7 5 0.86 RC037 10 12 2 0.79 RC037 10 12 2 0.79 RC037 10 12 2 0.79 RC037 10 12 2 0.77 RC040 3 3 1.69 RC041 1 1 0.77	RPP010	44	47	3	0.73
RP011 28 29 1 1.05 RP011 28 29 1 1.05 RP011 36 45 9 0.65 RP011 28 29 1 1.03 RP012 64 65 1 0.59 RC0022 14 15 1 0.60 RC0028 12 15 3 1.07 RC0028 26 27 1 1.08 RC0037 2 7 5 0.86 RC0037 10 12 2 0.79 RC0037 10 12 2 0.77 RC0038 6 7 1 0.56 RRC0040 23 24 1 0.77 RC0040 3 3 1.69 RRC0041 1 1 0.77 RRC0041 1 1 0.77 RRC0041 1 1 0.72 RRC0	RPP010	53	54	1	3.05
RPP011 28 29 1 1.03 RPP011 36 45 9 0.65 RPP012 28 29 1 1.03 RP012 64 65 1 0.59 RC0022 14 15 1 0.60 RC0028 12 15 3 1.07 RC0030 18 19 1 0.82 RC0037 10 12 2 0.79 RC0037 16 17 1 0.66 RC0037 16 17 1 0.56 RC0038 6 7 1 0.56 RC0040 3 3 1.69 0.84 RC0040 1 1 0.77 RC0040 28 31 3 1.27 RC0041 11 19 8 1.09 R 1.07 RC0041 1 0.77 RC0041 18 19 1 0.72	RFF010	20	20	1	1.05
RPP011 36 45 9 0.65 RPP011 48 51 3 0.52 RPP012 28 29 1 1.03 RPP012 64 65 1 0.59 RRC002 14 15 1 0.60 RRC002 14 15 1 0.60 RRC002 14 15 3 1.07 RRC003 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 10 12 2 0.79 RRC037 10 12 2 0.79 RRC037 10 12 2 0.79 RRC033 1.69	RPP011	20	29	1	1.05
RPP011 48 51 3 0.52 RPP012 28 29 1 1.03 RPP012 64 65 1 0.59 RRC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC039 20 21 1 0.57 RRC040 3 3 1.69 RRC040 23 24 1 0.77 RRC041 1 1 0.77 RRC041 1 1.077 RRC041 1 1 0.77 RRC041 2 1 0.67 RRC041 2 31 3 1.17 RRC041 2 2 0.71	RPP011	30	45	9	0.65
RPP012 28 29 1 1.03 RPP012 64 65 1 0.59 RRC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0039 20 21 1 0.57 RRC040 0 3 3 1.69 RRC040 23 24 1 0.77 RRC040 23 24 1 0.77 RRC041 1 1 0.77 RRC041 1 1.077 RRC041 24 25 1 0.67 RRC042 1 0.71 RRC041 23 31 3 1.17 RRC044 23 3 1.07 </th <th>RPP011</th> <th>48</th> <th>51</th> <th>3</th> <th>0.52</th>	RPP011	48	51	3	0.52
RPP012 64 65 1 0.59 RRC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0041 0 1 1 0.77 RRC0041 1 1 0.77 RRC0041 1 1 0.71 RRC0041 24 25 1 0.67 RRC0042 1 2 0.71 RRC0041 28 31 3 1.17 RRC0042 1 0.72 RRC0042 18 19	RPP012	28	29	1	1.03
RRC0022 14 15 1 0.60 RRC0028 12 15 3 1.07 RRC0028 26 27 1 1.08 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.56 RRC0040 0 3 3 1.69 RRC044 23 24 1 0.77 RRC041 1 1 0.77 RRC041 1 1 0.77 RRC041 24 25 1 0.67 RRC042 1 2 1 0.71 RRC041 28 31 3 1.17 RRC042 18 19 1 0.72 RRC044 0 3 3 <th< th=""><th>RPP012</th><th>64</th><th>65</th><th>1</th><th>0.59</th></th<>	RPP012	64	65	1	0.59
RRC0028 12 15 3 1.07 RRC0028 26 27 1 1.08 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 1 1 0.77 RRC0041 24 25 1 0.67 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 18 19 1 0.72 RRC0043 19 22	RRC0022	14	15	1	0.60
RRC0028 26 27 1 1.08 RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 28 31 3 1.49 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 18 19 1 0.76 RRC0044 3	RRC0028	12	15	3	1.07
RRC0030 18 19 1 0.82 RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 28 31 3 1.49 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 18 19 1 0.76 RRC0044 32 <th>RRC0028</th> <th>26</th> <th>27</th> <th>1</th> <th>1.08</th>	RRC0028	26	27	1	1.08
RRC0037 2 7 5 0.86 RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.57 RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 24 25 1 0.667 RRC0041 28 31 3 1.49 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0042 19 2 3 0.78 RRC0045 0	RRC0030	18	19	1	0.82
RRC0037 10 12 2 0.79 RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.57 RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 28 31 3 1.49 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 18 19 1 0.72 RRC0044 3 3 1.17 RRC0045 0 2 2 0.87 RRC0045 19 22	RRC0037	2	7	5	0.86
RRC0037 16 17 1 0.66 RRC0038 6 7 1 0.56 RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 23 24 1 0.77 RRC0041 0 1 1 0.77 RRC0041 0 1 1 0.77 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 18 19 1 0.72 RRC0044 3 3 1.17 RRC0045 0 2 2 0.87 RRC0045 2 2	RRC0037	10	12	2	0.79
RRC0038 6 7 1 0.56 RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 23 24 1 0.77 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 1 1 0.77 RRC0041 28 31 3 1.49 RRC0041 28 31 3 1.49 0.72 RRC0042 18 19 1 0.72 RRC0042 18 19 1 0.72 RRC0044 3 3 1.17 RRC0044 0 3 3 1.17 RRC0045 0 2 2 0.87 RRC0045 0 2 2 0.87 RRC045 0 2 2 0.87 RRC0045 19<	RRC0037	16	17	1	0.66
RRC0039 20 21 1 0.57 RRC0040 0 3 3 1.69 RRC0040 6 15 9 0.84 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 0.40 RRC0042 18 19 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 <th>RRC0038</th> <th>6</th> <th>7</th> <th>1</th> <th>0.56</th>	RRC0038	6	7	1	0.56
RRC0040 0 3 3 1.69 RRC0040 6 15 9 0.84 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 0 1 1 0.77 RRC0041 28 31 3 1.27 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 18 19 1 0.72 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0044 32 33 1.17 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 1 2	RRC0039	20	21	1	0.57
RRC0040 6 15 9 0.84 RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 0 1 1 0.77 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0041 24 25 1 0.67 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 0.71 RRC0042 18 19 1 0.72 RRC0044 3 3 1.17 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 1 2	RRC0040	0	3	3	1.69
RRC0040 23 24 1 0.77 RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 0 1 1 0.77 RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0048 12 13 1 0.57 RRC0048 12 13 1 0.55 RRC0049 10 11 1	RRC0040	6	15	9	0.84
RRC0040 23 24 1 0.77 RRC0041 0 1 1 0.77 RRC0041 0 1 1 0.77 RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0042 28 29 1 0.72 RRC0044 0 3 3 1.17 RRC0044 32 33 1 0.74 RRC0045 19 22 3 0.78 RRC0045 19 22 1 1.68 RRC0048 12 13 1 0.57 RRC0049 10 <th>RRC0040</th> <th>22</th> <th>24</th> <th>1</th> <th>0.77</th>	RRC0040	22	24	1	0.77
RRC0040 28 31 3 1.27 RRC0041 0 1 1 0.77 RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 0.72 RRC0042 28 29 1 0.72 RRC0044 0 3 3 1.17 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0050 5	RRC0040	20	24	2	1.27
RRC0041 0 1 1 0.77 RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 19 22 1 1.68 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 24	RRC0040	20	51	3	0.77
RRC0041 11 19 8 1.09 RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2 22 20	RRC0041	0	1	1	0.77
RRC0041 24 25 1 0.67 RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0042 28 29 1 0.72 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 19 22 1 1.68 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 <th>RRC0041</th> <th>11</th> <th>19</th> <th>8</th> <th>1.09</th>	RRC0041	11	19	8	1.09
RRC0041 28 31 3 1.49 RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 24 <th>RRC0041</th> <th>24</th> <th>25</th> <th>1</th> <th>0.67</th>	RRC0041	24	25	1	0.67
RRC0042 1 2 1 0.71 RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 19 22 3 0.78 RRC0045 19 22 1 1.68 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2	RRC0041	28	31	3	1.49
RRC0042 18 19 1 0.72 RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2 22 20 0.53 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 2 3 1	RRC0042	1	2	1	0.71
RRC0042 28 29 1 1.04 RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2 22 20 0.53 RRC0051 2 2 20 0.53 RRC0051 2 3 1 0.55 RRC0052 2 3 1 <	RRC0042	18	19	1	0.72
RRC0044 0 3 3 1.17 RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2 22 20 0.53 RRC0051 2 22 20 0.53 RRC0051 2 2 2 0 RRC0052 2 3 1 <	RRC0042	28	29	1	1.04
RRC0044 23 24 1 0.76 RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0052 2 3 1 0.99 RRC0053 33 </th <th>RRC0044</th> <th>0</th> <th>3</th> <th>3</th> <th>1.17</th>	RRC0044	0	3	3	1.17
RRC0044 32 33 1 0.74 RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 2 2 3 1 0.55 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34	RRC0044	23	24	1	0.76
RRC0045 0 2 2 0.87 RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 10 11 1 0.55 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0055 2 <th>RRC0044</th> <th>32</th> <th>33</th> <th>1</th> <th>0.74</th>	RRC0044	32	33	1	0.74
RRC0045 19 22 3 0.78 RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 16 17 1 1.46 RRC0050 5 8 3 0.47 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0051 2 22 20 0.53 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0055 2 5 3 1.47 RRC0055 2 5 3	RRC0045	0	2	2	0.87
RRC0046 35 36 1 1.15 RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 16 17 1 1.46 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 28 39 1 0.55 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0055 2 5 3 1.47 RRC0056 1 6 5	RRC0045	19	22	3	0.78
RRC0048 12 13 1 0.57 RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 16 17 1 1.46 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 2 3 1 0.99 RRC0053 2 5 3 1.47 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1	RRC0046	35	36	1	1.15
RRC0048 21 22 1 1.68 RRC0049 10 11 1 0.55 RRC0049 16 17 1 1.46 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 33 34 1 0.99 RRC0053 2 5 3 1.47 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0048	12	13	1	0.57
RRC0049 10 11 1 0.55 RRC0049 16 17 1 1.46 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0048	21	22	1	1.68
RRC0049 16 17 1 1.46 RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0055 2 5 3 1.47 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0049	10	11	1	0.55
RRC0049 20 29 9 2.76 RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0049	16	17	1	1.46
RRC0050 5 8 3 0.47 RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 2 3 1 0.99 RRC0053 2 4 2 2.49 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0049	20	29	9	2.76
RRC0050 12 18 6 1.56 RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 23 34 1 0.99 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0050	5	8	3	0.47
RRC0050 24 29 5 1.06 RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 23 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0050	12	18	6	1.56
RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0050	24	29	5	1.06
RRC0051 2 22 20 0.53 RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0051	2	20	20	0.53
RRC0051 27 29 2 1.26 RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.99 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RPC0051	2	20	20	1.26
RRC0051 38 39 1 0.55 RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0051	27	29	1	1.20
RRC0052 2 3 1 0.56 RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0051	30	33	1	0.55
RRC0053 2 3 1 0.99 RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RKCUU52	2	3	1	0.56
RRC0053 33 34 1 0.95 RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	KRC0053	2	3	1	0.99
RRC0054 2 4 2 2.49 RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0053	33	34	1	0.95
RRC0055 2 5 3 1.47 RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0054	2	4	2	2.49
RRC0056 1 6 5 1.85 RRC0056 14 15 1 5.95	RRC0055	2	5	3	1.47
RRC0056 14 15 1 5.95	RRC0056	1	6	5	1.85
	RRC0056	14	15	1	5.95

RRC0057	1	4	3	0.61
RRC0057	7	9	2	1.88
RRC0057	12	17	5	1.35
RRC0058	16	18	2	1.85
RRC0059	14	17	3	0.52
RRC0059	23	25	2	1.33
RRC0060	3	4	1	0.57
RRC0060	7	13	6	0.80
RRC0060	20	28	8	0.69
RRC0060	34	35	1	1.68
RRC0061	12	22	10	3.56
RRC0061	36	37	1	0.55
RRC0062	8	9	1	0.56
RRC0063	22	23	1	0.69
RRC0063	26	27	1	1.11
RRC0064	30	31	1	0.54
RRC0065	33	34	1	0.72
RRC0066	6	11	5	0.74
RRC0066	14	15	1	0.69
RRC0066	34	36	2	5.08
RRC0067	5	7	2	0.70
RRC0068	6	8	2	1.67
RRC0069	6	8	2	1.22
RRC0070	7	10	3	1.13
RRC0071	6	9	3	0.67
RRC0072	12	13	1	1.19
RRC0072	17	20	3	2.04
RRC0074	17	21	4	0.53
RRC0075	0	3	3	1.04
RRC0076	0	6	6	0.68
RRC0077	0	3	3	2.43
RRC0078	0	3	3	0.80
RRC0083	21	25	4	2.37
RRC0085	21	25	4	1.12
RRC0086	0	1	1	0.59
RRC0087	0	4	4	1.98
RRC0088	0	9	9	1.42
RRC0093	2	7	5	3.77
RRC0093	10	11	1	0.52
RRC0095	20	22	2	0.76
RRC0096	0	1	1	1.17
RRC0096	16	21	5	0.59
RRC0097	24	25	1	2.07
RRC0098	5	6	1	0.55
RRC0099	0	2	2	1.21
RRC0100	0	3	3	2.45
RRC0101	0	8	8	1.32
RRC0102	0	1	1	0.64
RRC0103	0	1	1	0.64
RRC0104	8	10	2	0.56
RRC0105	0	5	5	1.40
RRC0106	1	2	1	0.51
RRC0108	12	14	2	1.14
RRC0108	17	22	5	0.54
RRC0109	4	5	1	0.66
RRC0109	14	17	3	6.24
RRC0110	1	9	8	2.80
RRC0111	0	5	5	1.82

RRC0112	0	2	2	1.55
RRC0112	11	13	2	0.84
RRC0112	18	19	1	1.09
RRC0112	22	23	1	0.94
RRC0113	0	2	2	1.14
RRC0115	0	1	1	0.57
RRC0115	5	6	1	0.56
RRC0117	1	3	2	1 49
DDC0119	11	12	2	0.94
DDC0110	11	13	2	0.04
DDC0110	11	12	1	0.00
RRC0119	17	25	8	1.01
RRC0120	15	20	5	0.83
RRC0121	5	8	3	0.48
RRC0121	11	20	9	1.60
RRC0122	0	9	9	0.67
RRC0122	13	14	1	0.75
RRC0122	17	18	1	0.60
RRC0122	22	23	1	0.70
RRC0123	0	2	2	0.73
RRC0124	2	3	1	0.70
RRC0125	1	4	3	0.81
RRC0129	21	22	1	0.82
RRC0130	16	21	5	0.46
RRC0131	0	5	5	0.46
RRC0131	15	19	4	1.94
RRC0132	1	2	1	0.61
RRC0132	6	12	6	1.87
RRC0132	15	25	10	1.62
RRC0133	0	3	3	1.18
RRC0134	1	4	3	3.13
RRC0135	1	4	3	1.18
RRC0138	19	21	2	1.20
RRC0139	2	11	9	0.80
RRC0139	20	28	8	0.62
RRC0140	4	5	1	1.07
RRC0140	15	17	2	0.58
RRC0140	20	24	4	0.82
RRC0141	1	26	25	0.90
RRC0142	1	3	2	1.27
RRC0143	2	3	1	0.97
RRC0144	1	4	3	1.50
RRC0145	1	5	4	0.93
RRC0149	21	22	1	0.52
RRC0150	21	23	2	1.76
RRC0150	26	28	2	5.24
RRC0151	20	28	8	6.90
RRC0152	6	10	4	0.71
RRC0152	14	16	2	0.97
RRC0152	22	28	6	0.91
RRC0154	3	4	1	1.88
RRC0154	10	11	1	0.76
RRC0154	3	11	1	1.28
RRC0155	2	4	2	1.20
RRC0150	17	12	2	0.72
DDC0157	2	15	2	1 11
RRC0157	3	b	5	1.41
RRC0158	3	8	5	0.61
RRC0160	10	1/	1	0.08
KKC0161	18	27	9	4.77

RRC0162	17	23	6	1.08
RRC0163	7	11	4	1.61
RRC0163	17	30	13	1.09
RRC0166	3	5	2	0.87
RRC0167	3	5	2	1.32
RRC0168	3	6	3	1.39
RRC0168	9	10	1	0.65
RRC0169	4	7	3	1.00
RRC0170	4	7	3	0.87
RRC0171	3	4	1	1.27
RRC0171	8	9	1	5.18
RRC0172	8	10	2	1.93
RRC0172	18	19	1	0.71
RRC0172	21	22	1	0.55
RRC0173	3	4	1	0.67
RRC0173	19	20	1	7.52
RRC0173	27	28	1	0.85
RRC0174	7	8	1	0.95
RRC0174	25	28	3	3.15
RRC0175	14	15	1	1.55
RRC0178	4	6	2	1.00
RRC0179	4	7	3	2.39
RRC0180	4	7	3	1.23
RRC0181	4	8	4	1.70
RRC0182	4	8	4	0.56
RRC0183	15	16	1	0.59
RRC0184	9	13	4	0.46
RRC0184	16	20	4	1.38
RRC0185	9	10	1	0.86
RRC0185	26	29	3	0.72
RRC0186	11	23	12	1.77
RRC0186	28	29	1	1.22
RRC0187	13	14	1	1.43
RRC0191	5	6	1	0.69
RRC0191	13	14	1	0.81
RRC0192	5	7	2	1.67
RRC0193	5	8	3	3.22
RRC0194	5	8	3	0.89
RRC0195	1	5	4	1.06
RRC0195	11	17	6	0.58
RRC0196	12	16	4	1.20
RRC0197	5	10	5	0.95
RRC0198	11	17	6	0.64
RRC0199	11	12	1	0.51
RRC0199	29	30	1	0.71
RRC0203	6	7	1	0.62
RRC0205	7	9	2	1.35
RRC0206	6	9	3	1.39
RRC0207	3	4	1	1.58
RRC0207	7	11	4	1.05
RRC0208	7	12	5	0.83
RRC0209	9	10	1	0.77
RRC0210		2	2	0.92
	1	5		
RRC0211	1	4	3	1.42
RRC0211 RRC0212	1 1 8	4 10	3 2	1.42 2.16
RRC0211 RRC0212 RRC0213	1 1 8 0	3 4 10 1	3 2 1	1.42 2.16 0.67
RRC0211 RRC0212 RRC0213 RRC0265	1 1 8 0 9	4 10 1 11	3 2 1 2	1.42 2.16 0.67 1.65

RRC0266	17	18	1	0.53
RRC0266	26	29	3	0.53
RRC0267	9	11	2	0.74
RRC0267	25	26	1	0.83
RRC0268	10	11	1	1.10
RRC0270	9	11	2	0.58
RRC0271	9	11	2	0.82
RRC0272	9	11	2	2.24
RRC0272	26	27	1	0.74
RRC0272	33	34	1	0.68
RRC0272	39	40	1	0.78
RRC0273	8	11	3	1.42
RRC0273	22	27	5	0.41
RRC0274	8	10	2	1.20
RRC0274	18	19	1	1.03
RRC0275	7	9	2	1.55
RRC0276	8	10	2	1.73
RRC0281	6	16	10	0.76
RRC0282	6	9	3	1.74
RRC0283	7	12	5	0.69
RRC0283	19	28	9	0.70
RRC0284	8	9	1	1.31
RRC0284	20	23	3	0.52
RRC0284	26	27	1	0.54
RRC0285	7	12	5	1.12
RRC0285	18	23	5	0.74
RRC0285	29	30	1	0.68
RRC0286	7	10	3	0.98
RRC0286	28	30	2	0.87
RRC0288	8	9	1	0.82
RRC0288	12	13	1	0.54
RRC0289	8	12	4	0.60
RRC0290	8	12	4	0.80
RRC0291	9	16	7	0.93
RRC0296	8	9	1	0.50
RRC0300	6	8	2	0.91
RRC0301	6	9	3	0.63
RRC0303	16	17	1	0.53
RRC0303	22	26	4	0.90
RRC0304	7	12	5	0.50
RRC0304	16	18	2	1.91
RRC0306	26	30	4	0.99
RRC0308	7	14	7	0.87
RRC0309	8	11	3	1.64
RRC0310	8	12	4	0.86
RRC0312	9	10	1	0.65
RRC0313	8	13	5	0.81
RRC0314	8	10	2	0.93
RRC0315	7	9	2	1.17
RRC0316	8	9	1	0.64
RRC0321	13	16	3	0.83
RRC0321	22	23	1	0.60
RRC0322	13	18	5	0.90
RRC0322	26	28	2	7.00
RRC0322	35	36	1	2.13
RRC0323	10	11	1	2.68
RRC0323	16	17	1	0.60
RRC0323	23	24	1	0.55

RRC0324	23	33	10	0.78
RRC0324	39	40	1	19.30
RRC0327	6	7	1	0.50
RRC0327	11	12	1	19.30
RRC0328	7	9	2	2.11
RRC0329	7	10	3	0.77
RRC0330	8	9	1	1.14
RRC0330	13	14	1	0.86
RRC0331	7	8	1	1.05
PPC0222	, o	0	1	1.00
PRC0332	0	0	1	0.50
RRC0333	7	9	1 2	0.39
RRC0334	7	9	2	0.72
RRC0340	1	0	1	4.03
RRC0341	1	2	1	0.83
RRC0342	2	4	2	0.82
RRC0343	5	6	1	0.69
RRC0345	12	14	2	1.49
RRC0346	12	13	1	0.93
RRC0347	12	13	1	0.95
RRC0348	14	15	1	0.70
RRC0349	12	16	4	4.10
RRC0360	24	30	6	0.62
RRC0360	34	40	6	0.99
RRC0360	53	54	1	0.57
RRC0360	72	75	3	1.01
RRC0361	24	25	1	0.71
RRC0361	37	52	15	3.21
RRC0362	26	29	3	2.63
RRC0362	34	43	9	0.86
RRC0362	52	56	4	7.08
RRC0362	60	61	1	6.55
RRC0363	31	35	4	0.93
RRC0364	41	46	5	0.82
RRC0364	55	56	1	1.07
RRC0364	95	96	1	0.54
RRC0364	102	103	1	0.68
RRC0366	25	26	1	2.14
RRC0366	37	43	6	0.76
RRC0367	48	50	2	2.94
RRC0367	53	56	3	1 98
RRC0367	59	60	1	0.87
RRC0367	65	66	-	3.10
RRC0368	36	39	3	0.39
RRC0368	42	57	15	1 48
RRC0368	76	77	1	0.92
RRC0369	39	40	1	0.52
RRC0369	17	57	10	1 10
PPC0270	7	0	2	0.82
RR(0370	25	36	1	1 14
RRC0270	40	11	1	2.00
BBC0370	40	41	1	3.00
RKCU3/U	50	51	1	3.93
RKC0370	54	57	3	0.70
KKC0370	66	70	4	0.62
RRC0371	29	30	1	0.74
RRC0371	37	38	1	0.64
RRC0371	43	44	1	0.66
RRC0371	49	52	3	0.54
RRC0371	59	61	2	0.69

RRC0371	72	75	3	0.66
RRC0372	78	82	4	0.87
RRC0373	21	34	13	3.48
RRC0374	33	37	4	1.10
RRC0374	54	55	1	0.66
RRC0374	72	73	1	1.53
RRC0375	0	1	1	1.06
RRC0375	8	9	1	0.78
RRC0375	14	19	5	8.17
RRC0375	28	32	4	0.82
RRC0375	40	41	1	0.90
RRC0375	44	49	5	0.61
RRC0376	3	8	5	0.97
RRC0377	1	29	28	0.78
RRC0378	19	20	1	1.37
RRC0378	25	26	1	1.27
RRC0379	9	10	1	0.62
RRC0379	15	29	14	0.75
RRC0379	41	43	2	0.53
RRC0380	3	4	1	0.56
RRC0380	8	13	5	0.53
RRC0380	17	22	5	0.98
RRC0380	27	28	1	0.81
RRC0380	41	42	1	0.69
RRC0381	4	5	1	2.49
RRC0381	11	23	12	0.82
RRC0381	26	32	6	0.54
RRC0382	18	19	1	1.21
RRC0382	29	32	3	0.79
RRC0383	6	7	1	0.60
RRC0383	15	19	4	1.41
RRC0383	24	30	6	0.80
RRC0384	13	21	8	0.00
RRC0384	28	32	4	1.34
RRC0385	25	26	1	1 04
RRC0386	43	47	4	1.00
RRC0387	19	20	1	0.74
RRC0387	52	53	1	0.80
RRC0388	19	20	1	2 50
RRC0388	23	20	1	0.50
RRC0388	32	33	1	0.50
RRC0388	47	50	3	1.88
RRC0389	47	48	5	0.73
RRC0391	1	2	1	0.75
RRC0391	15	16	1	0.67
RRC0391	22	23	1	1.28
RRC0391	3	25 A	1	0.59
PPC0302	20	70	1	0.55
RRC0352	50	51	1	0.77
PPC0302	30	5	1	0.58
RDC0303	4	21	1	1.05
RRC0393	20	21	2	1.05
RRC0393	27	29	1	1.52
RRC0394	29	30	1	1.20
RRC0394	33	35	2	0.94
RKC0394	38	39	1	0.43
RKC0394	48	50	2	0.75
RRC0395	24	21	3	0.45
KKC0396	5	0	1	0.72

RRC0396	15	16	1	1.04
RRC0397	32	34	2	1.50
RRC0397	49	53	4	3.04
RRC0397	57	60	3	0.75
RRC0398	33	38	5	0.87
RRC0398	43	44	1	0.74
RRC0398	68	69	1	1 11
RRC0399	7	8	1	0.50
RRC0300	, 27	20	2	0.30
RRC0399	27	30	2	0.70
RRC0399	33	30	3	0.58
RRC0399	45	48	3	1.42
RRC0399	58	59	1	0.61
RRC0400	23	24	1	0.74
RRC0400	32	35	3	0.79
RRC0401	20	21	1	0.55
RRC0402	24	33	9	0.57
RRC0403	10	11	1	0.51
RRC0403	35	36	1	0.69
RRC0404	30	31	1	0.70
RRC0404	52	53	1	0.70
RRC0405	9	10	1	2.10
RRC0405	33	38	5	0.68
RRC0405	43	46	3	3.36
RRC0405	49	64	15	0.72
RRC0406	23	26	3	3.35
RRC0406	32	38	6	0.84
RRC0406	48	52	4	0.77
RRC0406	58	60	2	0.94
RRC0406	63	71	8	2.36
RRC0407	29	32	3	1.35
RRC0407	35	36	1	3.70
RRC0407	63	64	1	1.09
RRC0408	7	12	5	0.64
RRC0408	20	22	2	2.90
RRC0408	25	40	15	1.72
RRC0408	57	58	1	0.76
RRC0408	65	66	- 1	0.78
RRC0409	8	10	2	0.75
RRC0409	28	36	2	3 /19
RRC0409	51	52	1	0.54
RRC0410	8	11	-	0.76
RRC0410	29	41	12	5 10
RRC0410	44	51	7	1 28
RRC0410	65	66	, 1	0.53
RRC0410	28	20	2	2 55
RRC0411	25	12	7	0.02
RRC0411	67	42 68	1	0.52
RRC0412	/13	11	1	0.64
RRC0412		66	15	0.62
DDC0412	70	71	15	0.05
RRC0412	70	14		0.58
RRC0413	ð	14	b	0.76
RKC0413	38	44	6	0.57
KKC0413	4/	48	1	16.00
KKC0413	52	53	1	0.51
RRC0413	56	57	1	0.75
RRC0413	64	65	1	1.12
RRC0414	8	9	1	0.97
RRC0414	32	33	1	0.68

RRC0414	36	37	1	0.71
RRC0415	8	12	4	1.83
RRC0415	53	54	1	0.85
RRC0416	10	11	1	0.76
RRC0416	38	39	1	1.60
RRC0416	63	65	2	0.67
RRC0417	7	10	3	1.49
RRC0417	27	28	1	0.52
RRC0417	31	32	1	0.52
RRC0417	35	36	1	0.62
RRC0417	53	60	7	1.92
RRC0417	66	67	1	0.71
RRC0418	40	41	1	0.77
RRC0418	51	55	4	0.69
RRC0418	61	69	8	0.64
RRC0419	8	10	2	0.66
RRC0419	46	47	1	0.50
RRC0419	54	55	1	0.65
RRC0420	42	43	1	0.95
RRC0420	55	56	1	1.34
RRC0421	13	14	1	22.80
RRC0421	51	52	1	0.75
RRC0421	63	65	2	0.59
RRC0422	10	16	6	2.06
RRC0422	60	61	1	1.79
RRC0423	13	14	1	0.66
RRC0423	34	35	1	0.55
RRC0423	69	70	1	1.98
RRC0424	45	48	3	1.83
RRC0424	58	60	2	0.91
RRC0424	73	76	3	2.14
RRC0425	18	20	2	0.86
RRC0426	26	31	5	1.15
RRC0426	36	39	3	1.13
RRC0426	44	49	5	0.85
RRC0427	26	28	2	1.39
RRC0428	30	37	7	7.51
RRC0429	26	27	1	0.63
RRC0429	39	43	4	2.56
RRC0430	20	26	6	1.81
RRC0430	32	34	2	1.14
RRC0431	24	25	1	1.21
RRC0431	36	37	1	9.10
RRC0431	45	48	3	0.93
RRC0431	51	53	2	1.16
RRC0431	65	66	1	0.73
RRC0432	24	29	5	0.64
RRC0432	44	53	9	1.00
RRC0433	37	43	6	1.15
RRC0433	47	48	1	0.95
RRC0434	41	45	4	0.59
RRC0434	48	54	6	0.98
RRC0435	31	32	1	0.69
RRC0435	63	66	3	0.40
RRC0435	71	72	1	0.52
RRC0435	76	88	12	1.22
RRC0436	34	35	1	0.95
RRC0436	38	47	9	0.56

RRC0437	47	55	8	0.94
RRC0437	68	69	1	1.19
RRC0438	37	38	1	0.59
RRC0438	55	56	1	4.37
RRC0438	66	67	1	0.51
RRC0438	73	74	-	0.54
RRC0439	53	60	7	3 21
RRC0435	16	56	10	1 22
RRC0440	40	40	10	1.33
RRC0441	43	49	0	0.80
RRC0441	55	56	1	1.81
RRC0441	/1	72	1	0.87
RRC0441	77	78	1	1.00
RRC0442	37	38	1	0.89
RRC0442	44	47	3	1.64
RRC0442	54	69	15	4.25
RRC0443	44	45	1	0.82
RRC0443	49	55	6	1.09
RRC0444	35	37	2	3.34
RRC0444	61	62	1	4.06
RRC0445	32	37	5	0.67
RRC0445	41	43	2	1.23
RRC0446	26	31	5	0.93
RRC0446	34	42	8	1.23
RRC0446	45	46	1	1.11
RRC0446	49	51	2	4.49
RRC0447	27	28	-	0.66
RRC0447	31	42	11	0.98
RRC0447	19	54	6	0.50
RRC0447	-+0 2E	21	6	1.00
RRC0448	25	31	10	0.46
RRC0446	35	45	10	0.40
RRC0449	23	30	7	0.20
RRC0450	28	30	2	1.20
RRC0450	34	36	2	1.62
RRC0450	40	45	5	2.17
RRC0451	37	40	3	0.80
RRC0451	43	44	1	1.03
RRC0451	54	55	1	0.93
RRC0451	59	60	1	0.72
RRC0452	30	32	2	0.66
RRC0452	35	36	1	0.59
RRC0452	49	53	4	0.81
RRC0453	57	60	3	3.18
RRC0453	67	70	3	1.17
RRC0454	30	35	5	6.19
RRC0454	39	43	4	0.87
RRC0454	52	53	1	0.64
RRC0454	57	66	9	5.32
RRC0454	69	72	3	0.92
RRC0455	24	26	2	1.74
RRC0455	29	31	2	1.05
RRC0455	34	35	1	2.35
RRC0455	38	45	7	9.50
RRC0455	48	50	2	1.15
RRC0456	20	26	-	0.58
RRC0456	18	56	8	1 40
RRC0457	/12	10	1	2.45
RRCOAS	2/	49	1/	1.01
RRCOALS	52	50	14	5.04
11100430	55	55	0	5.04

RRC0458	67	68	1	0.65
RRC0458	73	77	4	0.78
RRC0458	81	82	1	0.94
RRC0459	35	41	6	1.19
RRC0459	47	51	4	0.72
RRC0460	40	47	7	9.26
RRC0460	53	54	1	0.50
RRC0462	59	60	1	1.49
RRC0462	66	68	2	1.14
RRC0463	24	25	1	0.68
RRC0463	43	46	3	4.21
RRC0463	50	51	1	2.24
RRC0464	30	31	1	0.67
RRC0464	62	63	1	1.08
RRC0464	81	82	1	0.53
RRC0464	90	91	1	0.52
RRC0465	39	40	1	0.77
RRC0465	49	52	3	0.60
RRC0466	51	53	2	0.63
RRC0466	57	62	5	0.70
RRC0467	38	39	1	1.31
RRC0467	43	51	8	2.43
RRC0468	21	22	1	0.71
RRC0468	31	39	8	1.07
RRC0468	46	52	6	4.51
RRC0469	31	36	5	2.11
RRC0469	40	44	4	1.71
RRC0469	49	50	1	5.66
RRC0469	74	77	3	0.53
RRC0472	11	12	1	2.54
RRC0474	2	5	3	0.71
RRC0475	3	7	4	0.69
RRC0479	47	48	1	0.51
RRC0480	35	36	1	0.78
RRC0480	56	57	1	3.61

RRC0480	62	63	1	1.08
RRC0482	25	34	9	0.62
RRC0482	42	46	4	0.90
RRC0482	49	50	1	0.52
RRC0483	48	56	8	3.05
RRC0484	45	47	2	0.76
RRC0484	50	51	1	1.23
RRC0484	65	66	1	1.59
RRC0485	41	43	2	1.46
RRC0486	12	13	1	0.51
RRC0486	17	18	1	0.74
RRC0486	21	22	1	0.84
RRC0486	32	33	1	0.72
RRC0486	39	43	4	3.93
RRC0486	46	51	5	3.97
RRC0487	12	13	1	0.58
RRC0487	36	40	4	0.81
RRC0487	65	70	5	0.71
RRC0487	74	75	1	1.17
RRC0487	78	80	2	0.61
RRC0487	88	89	1	0.52
RRC0488	41	44	3	6.12
RRC0488	51	53	2	0.95
RRC0488	56	69	13	0.54
RRC0489	21	22	1	0.79
RRC0489	29	30	1	0.59
RRC0489	57	58	1	0.56
RRC0490	36	37	1	0.69
RRC0490	71	72	1	1.45
RRC0492	17	21	4	0.49
RRC0494	49	50	1	1.24
RRC0494	66	67	1	1.28
RRC0495	25	26	1	0.59
RRC0499	21	23	2	0.53

Section 1: Sampling	Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary		
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 No Sampling activities have been conducted at Rainbow by Red 5 Sampling methods undertaken at Rainbow by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drillholes (DD). 		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	• RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (1984- 2002).		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 All historic RAB, RC, AC and DD and sampling is assumed to have been carried out to industry standard at that time. The majority of the recent historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis via fire assay and atomic absorption spectroscopy. Historical analysis methods include fire assay, aqua regia and unknown methods. 		
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 The number of holes intersecting the current resource is 628 holes amounting to 26,334m. The holes include Ac, RC and Diamond holes. Overall there are 106 air core holes, 517 reverse circulation holes and 5 diamond drill holes intersecting the wireframes within the Mineral Resource. 228 RAB holes were excluded from the estimation 		
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling.		
	Measures taken to maximise sample recovery and ensure representative nature of the samples	• It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling.		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Any historical relationship is not known.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of	• RC, RAB, AC and DD core logging is assumed to have been completed by previous holders to industry standard at that time.		

JORC Code, 2012 Edition – Table 1 for the Rainbow Project results – Rainbow Gold Deposit

Section 1: Sampling T	echniques and Data	
Criteria	JORC Code Explanation	Commentary
	detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Qualitative and quantitative logging of historic data varies in its completeness. Some diamond drilling has been geotechnically logged to provide data for geotechnical studies. Some historic diamond core photography has been preserved.
	The total length and percentage of the relevant intersections logged	Historic logging varies in its completeness.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All diamond core was cut in half onsite by previous companies.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Various sampling methods for historic RAB, AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split. It is unknown if wet sampling was carried out previously.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Best practice is assumed at the time of historic sampling.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Best practice is assumed at the time of historic RAB, DD, AC and RC sampling.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Some duplicate sampling was performed on historic RAB, RC, AC and DD drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of data determined sample sizes were considered to be appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised at the Rainbow project
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Industry best practice is assumed for previous holders. Historic QAQC data is stored in the database but not reviewed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	
	The use of twinned holes.	• Twinned holes have been drilled by previous owners at Rainbow with RC drilling to confirm the thickness and grade of the RC data.

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	• Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.	
	Discuss any adjustment to assay data.	 The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. No adjustments have been made to assay data. First gold assay is utilised for resource estimation. Reassays carried out due to failed QAQC will replace original results, though both are stored in the database. 	
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 The majority of downhole surveys for historic RAB, RC, AC and DD drilling is a combination of planned, multi and single shot data Red5 completed an aerial flyover adjusting the collar positions to a recent topography model generated in February 2019 	
	Specification of the grid system used.	A local grid system (HorsePaddockWells) is used. It is rotated 34.37 degrees east of MGA_GDA94. The two point conversion to MGA_GDA94 zone 51 is HPWEast HPWNorth RL MGAEast MGANorth RL Point 1 5000.000 10000.000 0 326629.964 6818424.080 0 Point 2 5000.000 16000.000 0 323220.071 6823360.953 0 Historic data is converted to HorsePaddockWells local grid on export from the database.	
	Quality and adequacy of topographic control.	Aerial Flyover survey has been used to establish a topographic surface.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The nominal drill spacing is 20m x 20m with some areas of the deposit at 40m x 40m or greater and others at 5m x 5m. This spacing includes data that has been verified from previous exploration activities on the project.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The Competent Person considers the data spacing to be sufficient to establish the degree of geological and grade continuity appropriate for future Mineral Resource classification categories adopted for Rainbow.	
Orientation of data in relation to geological	Whether sample compositing has been applied.	 Samples were composited to a fundamental length of 1m. Some historic RAB and AC drilling was sampled with 1-4m and 1-3m composite samples respectively. 	
structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Sampling of the mineralised domains has been conducted in most cases perpendicular to the lode orientations where the mineralisation controls are well understood. 	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling is designed to cross the ore structures close to perpendicular as practicable. There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures. 	

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
Sample security	The measures taken to ensure sample security.	• Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have been conducted on historical data

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Rainbow project is located on M37/547 which expire between 2028 and 2031. All mining leases have a 21-year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited, pending final transfer from Saracen Metals. The mining lease are subject to a 1.5% 'IRC' royalty. All production is subject to a Western Australian state government 'NSR' royalty of 2.5%. All bonds have been retired across these mining lease and they are all currently subject to the conditions imposed by the MRF. There are currently no native title claims applied for or determined across these mining leases owned by Greenstone Resources (WA) Pty Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and the license to operate already exists.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Rainbow deposit lies within the King of the Hills prospect area and has been mined through a small and shallow oxide pit in March to April 2004 to a depth of 18m below surface. The King of the Hills deposit was mined sporadically from 1898-1918. Modern exploration in the Leonora area was triggered by the discovery of the Habour Lights and Tower Hill prospects in the early 1980s, with regional mapping indicating the King of the Hills prospect area was worthy of further investigation. Various companies (Esso, Ananconda, BP Minerals. Kulim) carried out sampling, mapping and drilling activities delineating gold mineralisation. Kulim mined two small open pits in JV with Sons of Gwalia during 1986 and 1987. Arboynne took over Kulim's interest and outlined a new resource while Mount Edon carried out exploration on the surrounding tenements. Mining commenced but problems lead to Mount Edon acquiring the whole project area from Kulim, leading to the integration of the King of the Hills, KOTH West and KOTH Extended into the Tarmoola Project. Pacmin bought out Mount Edon and were subsequently taken over by Sons of Gwalia. St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the name given to the underground mine which St Barbara developed beneath the Tarmoola pit. St Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine.

Section 2: Reporting	of Exploration Results	
Criteria	JORC Code Explanation	Commentary
		In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen.
Geology	Deposit type, geological setting and style of mineralisation.	 The Rainbow project is located within the Leonora District in the Eastern Goldfields of Western Australia in the Norseman-Wiluna Greenstone belt. The greenstone stratigraphy in the Leonora District contains a western mafic-ultramafic succession and an eastern succession of felsic volcanics. The Raeside batholith intruded the greenstone units in the west. The Rainbow deposits are situated within the western mafic-ultramafic succession along the second order Ursus Shear zone.
Drillhole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A total of 628 holes have been used in the mineral resource and are deemed to be material. It is not practical to summarise all the holes here in this release. Drillhole collar locations, azimuth and dip, and significant assays are reported in the tables preceding this document. (Table 3. Rainbow drill hole collar locations reported for this announcement (Data reported in Mine Grid) Future drill hole data will be periodically released or when a result materially changes the economic value of the project.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Top-cut values where determined using statistical methods on domains based on; quantiles, log histograms and log probability plots for each domain group. Table below identifies the top-cut grades applied to each domain group for the domains Domain Top Cut Code (g/t) 101 10 102 10 103 10 201 10 203 10 301 10 401 10

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Exploration results have been calculated using weighted average length method. No grade cuts have been applied. Minimum value use is 0.2 g/t Au. Internal dilution up to 1m may be used. If a small zone of high grade is used this has been outlined in the comments section of the reported values. No metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Mineralisation at Rainbow has been intersected in most cases where mineralisation controls are known, approximately perpendicular to the orientation of the mineralised lodes.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in this release is an appropriately orientated plan and long section of the mineralisation, illustrating the centroids of the intercept point projected to a plane. Diagram below: Long-section view (looking west) of the current Rainbow mineralised wireframes, Domains 101, 102, 103 (green), Domains 201, 202, 203 (purple), Domain 301 (blue) dwith Diamond Drilling, Reverse Circulation and Air Core (blue strings):

Criteria	JORC Code Explanation	Commentary
		connicitally
		• Diagram below: Plan view showing the current topography (grey) and Resource Model Domains 301 and 203, Indicated and Inferred with Au >0.3g/t displayed as centroids:
		 Diagram below: Long section (looking W) showing the current topography (grey) and Resource Model
		Domains 101, 102, 103, 201 and 202, Indicated and Inferred with Au >0.3g/t displayed as centroids:
		250 Elev 250 Elev

Section 2: Reporting of	of Exploration Results	
Criteria	JORC Code Explanation	Commentary
		• Diagram below: Plan view showing the current topography (grey) and Resource Model Domains 301 and 203, Indicated and Inferred with Au >0.3g/t displayed as centroids; Indicated (2), Inferred (3):
		92 17750 N
		17500 N
		RESCAT_ 17250 N [ABSENT] III [2] 00 [3] 00
		• Diagram below: Long Section (looking W) showing the current topography (grey) and Resource Model Domains 101, 102, 103, 201 and 202, Indicated and Inferred with Au >0.3g/t displayed as centroids; Indicated (2), Inferred (3):
		500 Elev
		- 17250 N - 17250 N - 17750 N - 17750 N
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be	All exploration results have been reported by previous owners.

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
	practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Red5 completed an aerial flyover adjusting the collar positions to a recent topography model generated in February 2019 Aerial photography, geotechnical drilling, petrological studies, ground magnetics, metallurgical test-work and whole rock geochemistry have been completed by various companies over the history of the deposit. No other exploration data that may have been collected historically is considered material to this announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is currently reviewing the regional resource models and geology interpretations provided from the purchase of KOTH tenements from Saracen. No diagrams have been issued to show the proposed drilling plans for the Rainbow resource.

Criteria	JORC Code Explanation	Commentary
Database Integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drillhole planning to final assay, survey and geological capture. Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. The Database Administrator imports assay and survey data (downhole and collar) from raw csv files. Data from previous owners was taken to be correct and valid.
	Data validation procedures used.	 The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. Validation of data included visual checks of hole traces, analytical and geological data.
Site Visits	<i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>	• The competent person together with Red 5 technical representatives did conduct site visits to the King of the Hill regional project. The Competent person has an appreciation of the Rainbow deposit geology and the historical mining activities that occurred there.

Criteria	JORC Code Explanation	Commentary
Geological Interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed, validated and updated the historical interpretation of the Rainbow deposit. This knowledge is based on extensive geological logging of drill core, RC chips, and assay data.
	Nature of the data used and any assumptions made.	 The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration. Nine domains were included in the Resource on the review of geological continuity identified through historic drilling. Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built.
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	• Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.
	The use of geology in guiding and controlling the Mineral Resource estimation.	• The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.
	<i>The factors affecting continuity both of grade and geology.</i>	The main factors affecting continuity are; • Transported mineralisation within the laterite and colluvial channels • Supergene mineralisation within carbonated basalt, sheared microgranite dykes and chlorite schist
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The Rainbow Project consists of a mineralised basalt striking 15 degrees west of north (mine grid) over a distance of 550m plunging 30 degrees to the east. Mineralisation occurs in the surrounding ultramafic and laterite units. Mineralisation has been tested to approximately 100m below surface and remains open.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of	• Nine domains were estimated using ordinary kriging on 5mE x 10mN x 5mRL parent blocks size. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of estimation and search parameters for Domains 101 and 201 are as follows
	extrapolation from data points.	• Domain 101 – Rotation (ZYX) Z = -15 degrees, Y = -15 degrees, X = 0 degrees. Max search distances (first search pass) = Major = 10m, Semi-Major = 5m and Minor = 2m Min samples = 2, max samples = 15 (second search pass) = Major = 30m, Semi-Major = 15m and Minor = 6m Min samples = 4, max samples = 15
		• Domain 201 – Rotation (ZYX) Z = 65 degrees, Y = 0 degrees, X = 0 degrees. Max search distances (first search pass) = Major = 15m, Semi-Major = 10m and Minor = 2m Min samples = 2, max samples =15 (second search pass) = Major = 45m, Semi-Major = 30m and Minor = 6m Min samples = 4, max samples =15
		Future adjustments to minimum and maximum samples may be changed with the completion of additional statistical reviews with the inclusion of additional drilling.

Criteria	JORC Code Explanation	Commentary
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	• Ordinary Kriging (OK), Inverse Distance Squared (ID2) and Nearest Neighbour (NN) were completed on all domains as validation of the OK grades.
	The assumptions made regarding recovery of by- products.	No assumptions have been made with respect to the recovery of by-products.
	Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulfur for acid mine drainage characterisation).	There has been no estimate at this point of deleterious elements.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 The resource used the parent block size of 5m(X) by 10m(Y) by 5m(Z). These were deemed appropriate for the majority of the resource, where drill spacing is in the order of 20m x 20m. Parent blocks were sub-celled to 0.625m(X) by 1.25m(Y) by 0.625m(Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity. Three search estimation runs are used with the aim to satisfy the minimum sample criteria in the first search range where possible.
	Any assumptions behind modelling of selective mining units.	No assumptions have been made regarding mining units.
	Any assumptions about correlation between variables.	No assumptions have been made regarding correlation between variables.
	Description of how the geological interpretation was used to control the resource estimates.	• The geological interpretation strongly correlates with the mineralised domains. Domain boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced.
	Discussion of basis for using or not using grade cutting or capping.	• Resource analysis indicated that statistically very few grades in the domain populations required top- cutting. Top-cuts were employed to eliminate the risk of overestimating in the local areas where a few high-grade samples existed.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Several key model validation steps have been taken to validate the resource estimate. The mineral resource model has been stepped through visually in sectional and plan view to appreciate the composite grades used in the estimate and the resultant block grades. This has also been carried out in 3D with the composite grades and a point cloud of the model grades. Northing, Easting and Elevation swath plots have been constructed to evaluate the composited assay means against the mean block estimates.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	• The model is reported at a 0.60g/t Au cut-off grade. This is the expected grade cut off estimated using the assumed mining costs for the KOTH resource and a potential standalone processing plant as part of the KOTH Bulk mining study with the assumption that the Rainbow resource will be a satellite feed source.

Criteria	JORC Code Explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	• The possible mining method for Rainbow is an open pit, with the parent block size in the resource model reflecting bench heights of 5m.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	• No metallurgical studies have been completed for the Rainbow resource. However, the King of the Hills mine located approximately 3km to the north is currently being mined and is being trucked to the Red 5 owned Darlot processing plant. The fresh rock for the KOTH material has been averaging recoveries between 92% to 94.5%,. For the reported resource at a 0.6g/t cut off grade, approximately 34% of the resource is modelled as oxide, 49% as transitional and 17% as fresh.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	• The project covers an area that has been previously impacted by mining. The tenement area includes existing ethnographic heritage place ID 22413. SBM undertook extensive Aboriginal Heritage Surveys within the tenements and the management measures implemented are still in place.
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the	 The bulk densities, which were assigned to each domain in the resource model, which are determined from the previous reports by SGW Exploration In fresh rock density value assigned is 2.7g/cm³

Criteria	JORC Code Explanation	Commentary
	measurements, the nature, size and representativeness of the samples.	
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	• The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique as previously mentioned.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	An average mean of densities collected for each weathering profile material, fresh, transitional and oxide
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as a combination of Indicated, Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, and search volume using a perimeter string. For Indicated for drill spacing, a nominal drill spacing of 20m x 20m was used and for Inferred a nominal 40m x 40m was used. All other areas have been classified as Potential/Unclassified
	Whether appropriate account has been taken of all the relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	• All care has been taken to account for relevant factors influencing the mineral resource estimate. This model has been validated against internal models calculated by previous owners.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	 The geological model and the mineral resource estimate reflect the competent person's view of the deposit.
Audits or reviews	<i>The results of any audits or reviews of Mineral</i> <i>Resource estimates.</i>	• Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions.
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the actimate	• The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model.

Criteria	JORC Code Explanation	Commentary
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statements relate to a global estimate of tonnes and grade.

Appendix 2

Severn Project – Global Tonnes and Grade

Table 1: Severn Global Tonnes and Grade at 0.4g/t cut-off grade reported for this announcement

Severn Resource as at 30 April 2019					
Classification	Cut off (g/t)	Tonnes (t)	Gold (g/t)	Contained Gold (oz)	
Indicated	0.4	480,000	1.7	27,100	
Inferred	0.4	440,000	1.5	20,800	
Sub Total	0.4	920,000	1.6	47,900	

Table 2: Severn Global Tonnes and Grade at 0.4g/t cut-off grade base on material type reported for this announcement

Severn Resource as at 30 April 2019 by Material Type					
Classification	Material Type	Cut-off	Tonnes (t)	Gold (g/t)	Contained Gold (oz)
	Oxide	0.4	80,000	1.4	3,400
Indicated	Transitional	0.4	370,000	1.7	20,500
mulcaleu	Fresh	0.4	40,000	2.7	3,300
	Total	0.4	480,000	1.7	27,100
	Oxide	0.4	30,000	0.9	900
Informed	Transitional	0.4	200,000	1.3	8,200
interreu	Fresh	0.4	210,000	1.8	11,700
	Total	0.4	440,000	1.5	20,800
	Oxide	0.4	110,000	1.2	4,300
Total	Transitional	0.4	570,000	1.6	28,600
TOLAI	Fresh	0.4	240,000	1.9	15,000
	Total	0.4	920,000	1.6	47,900

Severn Project – Significant Assays for Underground Drilling

Table 3: Severn drill hole collar locations reported for this announcement (Data reported in Mine Grid)

BHID	Easting	Northing	Elevation	Length	DrillType
HPC2106	255972.8	667786.6	15819.46	80	RC
HPC2107	254999.1	676247	15878.44	80	RC
HPC2108	374089.6	1032065	22804.29	100	RC
HPC2109	465584.4	1289528	27197.74	120	RC
HPC2110	404851	1128713	24472.58	102	RC
HPC2111	498763.8	1385681	27665.65	148	RC
HPC2112	363633	1016549	21508.83	108	RC
HPC2113	429671.6	1210375	24449.27	144	RC
HPC2114	368758.5	1046389	21598.5	138	RC
HPC2115	369455	1060290	23092.77	100	RC
HPC2116	548902.7	1576846	32272.68	142	RC
HPC2465	302331	814981.2	19905.38	50	RC
HPC2466	363751.7	966032.9	23469.53	60	RC
HPC2468	526040.6	1518875	33224.35	90	RC
HPC2469	509433.7	1471875	32271.06	87	RC
HPC2470	338500.5	983630.4	21406.83	58	RC
HPC2471	292143.6	850042.3	18962.27	50	RC
HPC2472	58120.46	169601.4	3812.036	10	RC
HPC2473	163085.6	474886.4	10533.33	28	RC
HPC2474	186514	541500.8	12437.49	32	RC
HPC2475	443857.4	1286012	28434.26	76	RC
HPC2476	797953.7	2300620	47772.51	136	RC
HPC2477	337591.9	979218.1	21551.7	58	RC
HPC2478	203522.5	589307.4	13378.58	35	RC
HPC2479	355788.3	1027062	23122.57	61	RC

HPC2480	508774.6	1461504	32457.39	87	RC
HPC2481	174516.9	503332	11314.92	30	RC
HPC2482	443662	1275063	28553.92	76	RC
HPC2483	396576.2	1137963	26106.44	68	RC
HPC2484	409861.7	1168601	26759.7	70	RC
HPC2485	362558.8	968769.2	23451.74	60	RC
HPC2486	242072.9	641898.8	16035.27	40	RC
HPC2487	364004.4	962797.2	23492.02	60	RC
HPC2488	364398.6	959942.6	23502.01	60	RC
HPC2489	181866	476235.6	12016.21	30	RC
HPC2490	212474.8	556453.8	13971.54	35	RC
HPC2491	284776.7	748227.3	18219.67	142	RC
HPC2493	291778.5	765457.4	19017.36	48	RC
HPC2494	212226.2	559126.3	14115.12	35	RC
HPC2496	199622.8	530469.1	13313.93	33	RC
HPC2497	211855.7	563518.1	14064.53	35	RC
HPC2498	290292.5	773957	19016.13	48	RC
HPC2499	240174.2	667002.4	15917.88	40	RC
HPC2500	162113.4	451577.5	10865.01	27	RC
HPC2501	361201.3	1003507	23251.24	60	RC
HPC2502	210109.2	587152.1	13903.68	35	RC
HPC2503	391210.8	1090396	24962.28	65	RC
HPC2504	573439	1593594	35285.37	95	RC
HPC2505	157210.5	453597.4	10542.79	27	RC
HPC2507	531317.5	1478344	32983.33	88	RC
HPC2508	221922.7	622501.5	14660.02	37	RC
HPC2509	372909.4	1043135	23909.11	62	RC
HPC2510	482850.5	1346040	30223.71	80	RC
HPC2511	391871.1	1095186	24986.04	65	RC
HPC2512	150036.2	421871.9	10039.51	25	RC
HPC2513	300852.9	843737.5	19532.86	50	RC
HPC2514	434585.6	1215050	27485.28	72	RC
HPC2515	169405.4	490098.7	11460.21	29	RC
HPC2516	464308.8	1301298	29129.57	77	RC
HPC2517	150092.9	423135.1	10027.11	25	RC
HPC2518	289070.1	812404	18793.41	48	RC
HPC2519	435021.7	1218564	27427.32	72	RC
HPC2520	301108.6	847498.6	19516.81	50	RC
HPC2521	514066.7	1440790	31931.86	85	RC
HPC2522	149967.4	424379.7	10035.34	25	RC
HPC2523	300624	848782.7	19527.03	50	RC
HPC2524	398164.3	1120363	25339.48	66	RC
HPC2525	550780.2	1544719	33931.14	92	RC
HPC2526	495210.2	1394082	30946.16	82	RC
HPC2527	257828.5	732073.9	16993.5	43	RC
HPC2528	396998.5	1123622	25422.54	66	RC
HPC2529	530922.9	1498147	32874.41	88	RC
HPC2530	109193.8	285299.7	7288.005	18	RC
HPC2531	218848.1	570002.0	14293.4	30	RC
HPC2532	155451 2	254371.2	10454 62	10	RC
	155451.2	1250052	10454.05	20 65 16	
HFD2300	240820 4	660007 5	15062.62	70	PC
HSC150	162041.2	460276.2	10204.05	79	RC BC
HSC157	204285 5	5706/2 8	10394.05	75	RC PC
HSC150	204283.3	68/1/8 3	15518 26	88	RC
HSD006	331747 1	973881	17987 92	171	ПОН
	277801 1	777516 7	15286 11	112	лон
	167316	460361 4	920/ 585	00	лин
170658	325267 /	9//5070 5	19772 92	150	RC
SVD003	816236.9	2295064	47878 85	130	пон
SVP001	481693 9	1343991	30230 63	80	RC
SVP002	481587 5	1359902	30244.93	80	RC
SVP004	485447.4	1328190	30467.21	80	RC
SVP005	699165.7	1960586	43451.77	147	RC
					-

SVP006	643914.5	1829639	40668.49	139.5	RC
SVP007	481119.8	1376047	30338.61	80	RC
SVP008	472083.4	1296052	30436.02	80	RC
SVP009	480146.8	1296053	30660.61	80	RC
SVP010	638116.7	1770095	39894.42	158	RC
SVP011	472772.1	1327861	30669.04	80	RC
SVP012	528875.3	1460855	33713.34	106	RC
SVP013	591943.8	1617102	37439.69	154	RC
SVP014	562137.8	1525260	35837.68	158	RC
SVP015	429195.6	1150247	27599.25	104	RC
SVP016	484666.3	1335589	30319.61	80	RC
SVP017	300405.9	834979.9	19635.4	50	RC
SVP019	300336.5	839930.9	19523.75	50	RC
SVP020	460940.4	1284446	28840.38	76	RC
SVP021	342400.1	963454.4	22225.9	64	RC
SVP022	446508.9	1253970	28166.4	88	RC
SVP023	300295.7	849849	19552.84	50	RC
SVP024	422358.7	1193318	26894.29	70	RC
SVP025	485030	1367641	30483.22	80	RC
SVP026	48039.55	133183.7	3246.806	20	RC
SVP027	144258	399555.8	9560.333	40	RC
SVP028	96061.99	267198.2	6485.589	20	RC
SVP029	180505.3	500885.5	11674.13	61	RC
SVP030	78029.08	217727.2	5197.16	25	RC
SVP031	174233.3	485783.2	11413.51	48	RC
SVP032	95865.64	268791.1	6353.955	30	RC
SVP033	186380.8	520753.2	11853.79	55	RC
SVP034	72030.79	202178.9	4795.293	25	RC
SVP035	90151.37	252761	5953.076	30	RC
SVP036	84048.2	236675.7	5657.681	20	RC
SVP037	114311.1	321146.1	7370.132	50	RC
SVP038	102062.3	288124.6	6822.832	25	RC
SVP039	138270.3	389809.1	9140.19	40	RC
SVP040	90010.74	254988.6	5980.109	30	RC
SVP041	174456.8	492888.4	11242.94	50	RC
SVP042	72018.94	204575.8	4801.456	30	RC
SVP043	96109.44	272766.9	6277.332	40	RC
WSP001	421855.3	1184548	27886.42	73	RC
WSP002	286488.7	810598.7	19570.94	50	RC

Table 4: Severn significant assays report in this announcement(cut-off grade of 0.3g/t, 2m of internal dilution)

Ī

BHID	FROM	то	LENGTH	AU	HPC2116	104	105	1	0.50
HPC2106	63	66	3	1.20	HPC2465	39	40	1	0.36
HPC2107	62	66	4	1.17	HPC2466	35	36	1	0.33
HPC2108	57	60	3	1.31	HPC2466	46	48	2	5.36
HPC2108	84	88	4	0.91	HPC2468	84	87	3	1.57
HPC2109	96	106	10	1.63	HPC2469	82	90	8	18.45
HPC2109	109	114	5	0.24	HPC2469	96	98	2	3.24
HPC2110	30	31	1	1.29	HPC2471	65	66	1	1.57
HPC2110	76	82	6	1.38	HPC2472	35	36	1	0.42
HPC2111	97	99	2	1.39	HPC2473	37	44	7	2.37
HPC2111	126	128	2	0.49	HPC2474	0	1	1	0.36
HPC2111	133	135	2	0.80	HPC2474	35	39	4	0.36
HPC2111	139	140	1	0.86	HPC2475	31	33	2	0.92
HPC2112	87	96	9	3.03	HPC2475	75	78	3	2.60
HPC2113	93	95	2	0.40	HPC2476	40	41	1	0.45
HPC2113	98	99	1	1.64	HPC2476	55	65	10	0.51
HPC2113	138	139	1	0.42	HPC2476	123	125	2	1.37
HPC2116	50	51	1	4.89	HPC2477	47	52	5	1.95
HPC2116	95	96	1	8.65	HPC2478	16	24	8	1.39

83 1 3.48	
18 4 0.29	
15 1 0.31	
30 5 1.23	
46 1 0.45	
40 3 0.78	
59 6 0.72	
50 2 0.49	
2 0.45 2 1.15	
21 1 0.20	
31 1 0.30	
55 1 0.50	
71 9 1.92	
80 2 0.33	
20 1 1.44	
32 9 4.82	
36 1 0.32	
30 2 0.56	
60 18 1.73	
35 1 0.31	
39 1 0.65	
76 16 1.99	
86 1 0.42	
33 2 0.38	
23 3 0.48	
36 0.9 0.30	
53 7.7 1.79	
60 3.5 3.50	
F2 1 F 72	
53 1 5.72	
53 1 5.72 59 2 1.71	
53 1 5.72 59 2 1.71 39 3 0.24	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86	
53 1 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.46 59 6 2.32 64 1 0.86 76 1 0.49	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86 76 1 0.64 46 1 0.49	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 13 2.45 80 4 0.45 46 4 0.48 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86 76 1 0.64 46 4 0.49 66 4 0.54	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86 76 1 0.64 46 4 0.49 66 4 0.54 47 2 0.37	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86 76 1 0.64 46 4 0.49 66 4 0.54 47 2 0.37 67 2 0.65	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 1 0.46 59 6 2.32 64 1 0.86 76 1 0.64 46 4 0.49 66 4 0.54 47 2 0.37 67 2 0.65 73 1 0.46	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 13 2.45 80 4 0.45 46 4 0.48 52 13 0.46 59 6 2.32 64 1 0.49 66 4 0.54 47 2 0.37 67 2 0.65 73 1 0.46	
531 5.72 59 2 1.71 39 3 0.24 44 1 0.76 51 3 0.38 5 89.25 0.2 0.40 1 103.7 2.6 4.50 5 94 5.4 2.33 2 81.5 9.3 2.20 49 2 0.51 87 7 1.18 43 1 1.02 65 13 1.58 30 4 0.43 52 13 2.45 80 4 0.45 46 4 0.48 52 13 2.45 80 4 0.45 46 4 0.48 52 13 2.45 80 4 0.45 46 4 0.48 52 13 0.46 59 6 2.32 64 1 0.86 76 1 0.64 47 2 0.37 67 2 0.65 73 1 0.46 56 1 0.37 53 2 0.79	
	30 5 1.23 46 1 0.45 40 3 0.78 59 6 0.72 50 2 0.49 85 9 1.15 31 1 0.30 55 1 0.50 71 9 1.92 80 2 0.33 20 1 1.44 32 9 4.82 36 1 0.32 30 2 0.56 60 18 1.73 35 1 0.31 39 1 0.65 76 16 1.99 86 1 0.42 33 2 0.38 23 3 0.48 36 0.9 0.30 35 7.7 1.79 36 0.9 0.30 35 7.7 1.79 36

SVP010	77	78	1	0.43	SVP025	50	52	2	0.45
SVP011	74	77	3	0.33	SVP028	11	15	4	0.80
SVP013	59	64	5	0.61	SVP029	34	41	7	0.82
SVP014	56	57	1	0.49	SVP031	27	33	6	0.75
SVP015	31	34	3	0.83	SVP032	22	24	2	2.61
SVP017	21	27	6	1.76	SVP033	38	55	17	3.22
SVP019	28	36	8	1.57	SVP034	19	20	1	1.57
SVP019	39	40	1	0.42	SVP035	25	27	2	0.70
SVP020	33	34	1	0.30	SVP037	28	35	7	1.35
SVP021	18	20	2	3.62	SVP039	23	24	1	0.37
SVP021	33	35	2	0.53	SVP040	22	26	4	0.45
SVP022	49	58	9	1.99	SVP041	31	47	16	2.56
SVP022	69	70	1	0.38	SVP042	27	28	1	0.30
SVP023	22	35	13	1.21	SVP043	39	40	1	0.56
SVP023	41	42	1	1.15	WSP001	28	29	1	0.50

JORC Code, 2012 Edition – Table 1 for the Severn Project results – Severn Gold Mine

Section 1: Sampling	rechniques and Data	
Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 No Sampling activities have been conducted at Severn by Red 5 Sampling methods undertaken at Severn by previous owners have included rotary air blast (RAB), reverse circulation (RC), aircore (AC), diamond drillholes (DD).
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	• RC, RAB, AC and DD core drilling is assumed to have been completed by previous holders to industry standard at that time (1984- 2002).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 All historic RAB, RC, AC and DD and sampling is assumed to have been carried out to industry standard at that time. The majority of the recent historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis via fire assay and atomic absorption spectroscopy. Historical analysis methods include fire assay, aqua regia and unknown methods.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 The number of holes intersecting the current resource is 118 holes amounting to 864m. The holes include both RC and Diamond holes. Overall there are 113 reverse circulation holes and 5 diamond drill holes intersecting the wireframes within the Mineral Resource. 241 RAB holes and 13 AC holes were excluded from the estimation
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessedMeasures taken to maximise sample recovery and ensure representative nature of the samplesWhether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling. It is unknown what, if any, measures were taken to ensure sample recovery and representivity with historic sampling. Any historical relationship is not known.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of	• RC, RAB, AC and DD core logging is assumed to have been completed by previous holders to industry standard at that time (1984- 2002).

Section 1: Sampling T	echniques and Data	
Criteria	JORC Code Explanation	Commentary
	detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Qualitative and quantitative logging of historic data varies in its completeness. Some diamond drilling has been geotechnically logged to provide data for geotechnical studies. Some historic diamond core photography has been preserved.
	The total length and percentage of the relevant intersections logged	Historic logging varies in its completeness.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All diamond core was cut in half onsite by previous companies.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Various sampling methods for historic RAB, AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split. It is unknown if wet sampling was carried out previously.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Best practice is assumed at the time of historic sampling.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Best practice is assumed at the time of historic RAB, DD, AC and RC sampling.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Some duplicate sampling was performed on historic RAB, RC, AC and DD drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Analysis of data determined sample sizes were considered to be appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised at the Severn project
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Industry best practice is assumed for previous holders. Historic QAQC data is stored in the database but not reviewed.
Verification of sampling and assaving	The verification of significant intersections by either independent or alternative company personnel	
	The use of twinned holes.	• Twinned holes have been drilled by previous owners at Severn with RC drilling to confirm the thickness and grade of the RC data. All twinned holes were included within the estimation.

Section 1: Sampling	Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	• Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Red 5 SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.
	Discuss any adjustment to assay data.	 The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. No adjustments have been made to assay data. First gold assay is utilised for resource estimation. Reassays carried out due to failed QAQC will replace original results, though both are stored in the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 The majority of downhole surveys for historic RAB, RC, AC and DD drilling is a combination of planned, multi and single shot data Red5 completed an aerial flyover adjusting the collar positions to a recent topography model generated in February 2019
	Specification of the grid system used.	A local grid system (HorsePaddockWells) is used. It is rotated 34.37 degrees east of MGA_GDA94. The two point conversion to MGA_GDA94 zone 51 is HPWEast HPWNorth RL MGAEast MGANorth RL Point 1 5000.000 10000.000 0 326629.964 6818424.080 0 Point 2 5000.000 16000.000 0 323220.071 6823360.953 0 Historic data is converted to HorsePaddockWells local grid on export from the database.
	Quality and adequacy of topographic control.	Aerial Flyover survey has been used to establish a topographic surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The nominal drill spacing is 20m x 20m with some areas of the deposit at 80m x 80m or greater. This spacing includes data that has been verified from previous exploration activities on the project.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The Competent Person considers the data spacing to be sufficient to establish the degree of geological and grade continuity appropriate for future Mineral Resource classification categories adopted for Severn.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	 Samples were composited to a fundamental length of 1m. Some historic RAB and AC drilling was sampled with 3-4m composite samples. Anomalous zones were resampled at 1m intervals in some cases; it is unknown at what threshold this occurred.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit	• Sampling of the mineralised domains has been conducted in most cases perpendicular to the lode orientations where the mineralisation controls are well understood.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling is designed to cross the ore structures close to perpendicular as practicable. There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures.
Sample security	The measures taken to ensure sample security.	Historical samples are assumed to have been under the security of the respective tenement holders until

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
		delivered to the laboratory where samples would be expected to have been under restricted access.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have been conducted on historical data

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Severn resource is located on M37/451 which expires 15 Nov 2036. All mining leases have a 21 year life and are renewable for a further 21 years on a continuing basis. The mining leases are 100% held and managed by Greenstone Resources (WA) Pty Limited, a wholly owned subsidiary of Red 5 Limited. The mining leases are subject to a 1.5% 'IRC' royalty. All production is subject to a Western Australian state government 'NSR' royalty of 2.5%. All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF. There are currently no native title claims applied for or determined across these mining leases. Lodged aboriginal heritage place (Place ID: 1741).
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and the license to operate already exists.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There are a number of small and shallow historic working located in the Severn project area Modern exploration began with Esso who carried out mapping, rock chip sampling, and RAB and RC drilling between 1984-1986. Between 1987 and 1992 City Resources were the tenement holders and conducted ground and airborne geophysics, and further RC and RAB drilling. Sons of Gwalia acquired the project in 1992 and in 1997 produced the first resource model. Further models were released in 1999 and 2002. St Barbara acquired the project after taking over Sons of Gwalia in 2005. King of The Hills is the name given to the underground mine which St Barbara developed beneath the Tarmoola pit. St Barbara continued mining at King of The Hills and processed the ore at their Gwalia operations until 2005 when it was put on care and maintenance. It was subsequently sold that year to Saracen Minerals Holdings who re-commenced underground mining in 2016 and processed the ore at their Thunderbox Gold mine. In October 2017 Red 5 Limited purchased King of the Hills (KOTH) Gold Project from Saracen.
Geology	Deposit type, geological setting and style of mineralisation.	 The Severn project predominantly consists of a high Mg basalt and Tholeiitic basalt. Gold mineralisation is associated with thin chert and BIF horizons northerly trending. Ultramafics are present and adjacent to the western chert package with slithers of ultramafic present within the high Mg basalt on the eastern margin. Increased gold enrichment occurs when there are intersecting flat lying shears dipping to the east (mine grid). These high grade zones within the main mineralised zone are plunging shallowly to the north.

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		• Historic drilling completed by Sons of Gwalia in 1993/94 indicated the quartz carbonate veining with the chert and along the contacts between the chert, shales and siltstone or high Mg basalts results in higher grade mineralisation. Pyrite is predominately disseminated in the sediments as well as being present within the veins.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 A total of 118 holes have been used in the mineral resource and are deemed to be material. It is not practical to summarise all the holes here in this release. Drillhole collar locations, azimuth and drill hole dip and significant assays are reported in the tables preceding this document. (Table 3. Severn drill hole collar locations reported for this announcement (Data reported in Mine Grid) Future drill hole data will be periodically released or when a result materially changes the economic value of the project.
Data aggregation	In reporting Exploration Results, weighting	• Top-cut values where determined using statistical methods on domains based on; quantiles, log histograms and
methods	averaging tecnniques, maximum and/or minimum grade truncations (e.g. cutting of	• Table below identifies the top-cut grades applied to each domain group for the domains
	high grades) and cut-off grades are usually	Domain Top Cut
	Material and should be stated.	Code (g/t)
		100 10
		101 -
		102 -
		200 10
		201 -
		300 10
		301 10
		302 10
		303 10

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
	Where aggregate intercepts incorporate shortlengths of high grade results and longerlengths of low grade results, the procedureused for such aggregation should be statedand some typical examples of suchaggregations should be shown in detail.The assumptions used for any reporting of	 Exploration results have been calculated using weighted average length method. No grade cuts have been applied. Minimum value use is 0.3 g/t Au. Internal dilution up to 1m may be used. If a small zone of high grade is used this has been outlined in the comments section of the reported values. Note due to the type of mineralization high grade values are common over narrow intervals. No metal equivalents are used.
	metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Mineralisation at Severn has been intersected in most cases where mineralisation controls are known, approximately perpendicular to the orientation of the mineralised lodes.
Diagrams Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar	 Included in this release is an appropriately orientated long section of the mineralisation, illustrating the centroids of the intercept point projected to a plane. Diagram below: Plan view of the current interpretation (mineralised domains) and intersecting RC and DD holes used in the estimation: 	
	locations and appropriate sectional views.	

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		• Diagram below: Oblique view (looking SE) showing RC and DD holes intersecting Severn (red) and the current interpretation:
		6 ¹⁰ – 15500mn–
		Z ^{6200tr®}
		16000mN-
		-16500mN
		16500mN-
		-17000mN
		17000mN-
		-17500mN
		stronte 17500mN-

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		• Diagram below: Oblique long section (looking NW) showing domains 100 (purple), 101 (yellow), 200 (green), 201 and 202 (orange):
		-17500mN
		17500nN
		-1700cmN
		1950ml Itescomv
		-76000mN
		16000mN- -75500mN dfr
		Diagram below: Plan view showing the current topography and Resource Model, Indicated and Inferred with Au <0.3g/t displayed as blocks: 5500 E 5500 E 5500 E 5500 E

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		• Diagram below: Long section (looking West) showing the current topography and the March 2019, Domains 100, 101 and 102, Indicated and Inferred resource with Au >0.30g/t. Model displayed as blocks
		-500 Elev 000 000 000 000 000 000 000 000 000 0
		with the synth z 250 Elev 250 Elev
		• Diagram below: Long section (looking West) showing the current topography and the March 2019, Domains 200, 201 and 202, Indicated and Inferred resource with Au >0.30g/t. Model displayed as blocks:
		-500 Elev 000 99 000 000 000 000 000 500 Elev
		AURIX
		-250 Elev in stall 250 Elev 250 Elev 250 Elev in stall in stall 250 Elev 250 Elev

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
		• Diagram below: Long section (looking West) showing the current topography and Domains 100, 101 and 102 Indicated and Inferred resource with Au >0.3g/t. Model displayed as blocks where Indicate =2 and Inferred = 3
		-500 Elev 00 99
		-250 Elev
		• Diagram below: Long section (looking West) showing the current topography and Domains 200, 201 and 202 Indicated and Inferred resource with Au >0.3g/t. Model displayed as blocks where Indicate =2 and Inferred = 3
		250 Elev
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been reported by previous owners.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	 Red5 completed an aerial flyover adjusting the collar positions to a recent topography model generated in February 2019 Aerial photography, geotechnical drilling, petrological studies, ground magnetics, metallurgical test-work and whole rock geochemistry have been completed by various companies over the history of the deposit. No other exploration data that may have been collected historically is considered material to this announcement.

Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Red 5 Limited is currently reviewing the regional resource models and geology interpretations provided from the purchase of KOTH tenements from Saracen No diagrams have been issued to show the proposed drilling plans for the Severn resource.

Section 3: Estimation and Reporting of Mineral Resources		
Criteria	JORC Code Explanation	Commentary
Database Integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The database provided to Red 5 was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drillhole planning to final assay, survey and geological capture. Logging data (lithology, alteration and structural characteristics of core) is captured directly either by manual or customised digital logging tools with stringent validation and data entry constraints. Geologists load logging data in the database where initial validation of the data occurs. The data is uploaded into the database by the geologist after which ranking of the data happens based on multiple QAQC and validation rules. The Database Administrator imports assay and survey data (downhole and collar) from raw csv files. Data from previous owners was taken to be correct and valid.
	Data validation procedures used.	 The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications. Validation of data included visual checks of hole traces, analytical and geological data.
Site Visits	<i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>	• The competent person together with Red 5 technical representatives did conduct site visits to the King of the Hill project. The Competent person has an appreciation of the Severn deposit geology.
Geological Interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The interpretation has been based on the detailed geological work completed by previous owners of the project. Red 5 has reviewed and validated the historical interpretation of the Severn deposit. This knowledge is based on extensive geological logging of drill core, RC chips, detailed mapping and assay data.
	Nature of the data used and any assumptions made.	• The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration.

Section 3: Estimation and Reporting of Mineral Resources		
Criteria	JORC Code Explanation	Commentary
		 Six domains were included in the Resource on the review of geological continuity identified through historic drilling. Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built.
	The affect, if any, of alternative interpretations on Mineral Resource estimation.	 Red 5 has not considered any alternative interpretation on this resource. Red 5 is continuing to review all the resource data with the aim of validating the current interpretation and its extents.
	The use of geology in guiding and controlling the Mineral Resource estimation.	• The wireframed domains are constructed using all available geological information (as stated above) and terminate along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains.
	The factors affecting continuity both of grade and geology.	 The main factors affecting continuity are; Chert/BIF horizons in between high Mg basalts. Increased gold enrichment occurs on intersecting boundaries of flat lying shears dipping to the east (mine grid) Quartz carbonate veining with the chert and along the contacts between the chert, shales and siltstone or high Mg basalts results in higher grade mineralisation. Pyrite is predominately disseminated in the sediments as well as being present within the veins. These factors were used to aid the construction of the mineralisation domains.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The Severn Project consists of two mineralised zones striking 10 degrees west of north (mine grid) over a distance of 400m with high grade zones plunging shallowly to the north. Individual lodes are near vertical with flat lying shear zones out to the west. Mineralisation has been tested to approximately 100m below surface and remains open.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	 Six domains were estimated using ordinary kriging on 5mE x 10mN x 5mRL parent blocks size. Search parameters are consistent with geological observation of the mineralisation geometry, with three search passes completed: Examples of estimation and search parameters for Domains 100 and 101 are as follows Domain 100 – Rotation (ZYX) Z = 210 degrees, Y = 55 degrees, Z = -30 degrees. Max search distances (first search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 2, max samples = 15 (second search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 4, max samples = 15 Domain 101 – Rotation (ZYX) Z = 175 degrees, Y = 25degrees, Z = 0 degrees. Max search distances (first search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 4, max samples = 15 (second search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 4, max samples = 15 Domain 101 – Rotation (ZYX) Z = 175 degrees, Y = 25degrees, Z = 0 degrees. Max search distances (first search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 4, max samples = 15 (second search pass) = Major = 40m, Semi-Major = 20m and Minor = 10m Min samples = 4, max samples = 15 Future adjustments to minimum and maximum samples may be changed with the completion of additional statistical reviews with the inclusion of additional drilling.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	• Ordinary Kriging (OK), Inverse Distance Squared (ID2) and Nearest Neighbour (NN) were completed on all domains as validation of the OK grades. Domain comparisons between the previous Saracen model and this model were completed.

Section 3: Estimation a	Section 3: Estimation and Reporting of Mineral Resources		
Criteria	JORC Code Explanation	Commentary	
	The assumptions made regarding recovery of by-products.	No assumptions have been made with respect to the recovery of by-products.	
	<i>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulfur for acid mine drainage characterisation).</i>	There has been no estimate at this point of deleterious elements.	
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 The resource used the parent block size of 5m(X) by 10m(Y) by 5m(Z). These were deemed appropriate for the majority of the resource, where drill spacing is in the order of 25m x 25m. Parent blocks in the mineralised domains were sub-celled to 0.625m(X) by 1.25m(Y) by 0.625m(Z) and in the waste domains were sub-celled to 1.25m(X) by 1.25m (Y) by 1.25m (Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity. Three search estimation runs are used with the aim to satisfy the minimum sample criteria in the first search range where possible. 	
	Any assumptions behind modelling of selective mining units.	No assumptions have been made regarding mining units.	
	Any assumptions about correlation between variables.	No assumptions have been made regarding correlation between variables.	
	Description of how the geological interpretation was used to control the resource estimates.	• The geological interpretation strongly correlates with the mineralised domains. Domain boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced.	
	Discussion of basis for using or not using grade cutting or capping.	 Resource analysis indicated that statistically very few grades in the domain populations required top-cutting. Top-cuts were employed to eliminate the risk of overestimating in the local areas where a few high-grade samples existed. 	
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Several key model validation steps have been taken to validate the resource estimate. The mineral resource model has been stepped through visually in sectional and plan view to appreciate the composite grades used in the estimate and the resultant block grades. This has also been carried out in 3D with the composite grades and a point cloud of the model grades. Northing, Easting and Elevation swathe plots have been constructed to evaluate the composited assay means against the mean block estimates. 	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estimated on a dry basis.	
Cut-off parameters	<i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i>	 The mineralised domains have been interpreted on a nominal 0.3 g/t grade boundary. The model is reported at a 0.4g/t Au cut-off. This cut off is chosen has the resource starts at or near surface, is suitable for open pit mining and high-level/conceptual pit optimisations show 0.4 g/t can be treated as ore. This is the expected grade cut off estimated using the assumed mining costs for the KOTH resource and a potential 	

Section 3: Estimation and Reporting of Mineral Resources				
Criteria	JORC Code Explanation	Commentary		
		standalone processing plant as part of the KOTH Bulk mining study with the assumption that the Severn resource will be a satellite feed source.		
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Potential mining method is open pit. The Full economic evaluation is yet to be done to determine most suitable equipment and bench heights that could potentially be mined. The resource model has been set up for pit optimisation but is recommended that the model to be reblocked to an SMU once an appropriate mining fleet has been determined. This will ultimately increase tonnes and reduce the reported grades due to the planned dilution. 		
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment process and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Based on historical mining at King of the Hills, gold recovery factors for oxide and transition ore are assumed at 95% King of the Hills ore is currently processed at Darlot Mining Operations with gold recoveries in fresh ore ranging between 92-94.5%. 		
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been	• The project covers an area that has not been previously impacted by mining. The tenement area includes existing ethnographic heritage places. SBM undertook extensive Aboriginal Heritage Surveys within the tenements and the management measures implemented are still in place.		

Section 3: Estimation and Reporting of Mineral Resources				
Criteria	JORC Code Explanation	Commentary		
	considered this should be reported with an explanation of the environmental assumptions made.			
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 The bulk densities, which were assigned to each domain in the resource model, are derived from historical reports for the weathering profile of the deposit. In fresh rock density value assigned is 2.7g/cm³ 		
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	• The procedure the previous owners utilised, included the coating of dried samples in paraffin wax where the samples had some degree of weathering, were porous or clay rich. These coated samples were then tested using the water displacement technique as previously mentioned.		
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	An average mean of densities collected for each weathering profile material, fresh, transitional and oxide		
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource model is classified as a combination of Indicated, Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, and search volume using a perimeter string. All other areas have been classified as Potential/Unclassified 		
	Whether appropriate account has been taken of all the relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	• All care has been taken to account for relevant factors influencing the mineral resource estimate. This model has been validated against non JORC reported model developed by previous owners and not previously reported.		
	Whether the result appropriately reflects the Competent Person's view of the deposit.	• The geological model and the mineral resource estimate reflect the competent person's view of the deposit.		
Audits or reviews	<i>The results of any audits or reviews of Mineral</i> <i>Resource estimates.</i>	• Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions.		
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical	• The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model.		

Section 3: Estimation and Reporting of Mineral Resources			
Criteria	JORC Code Explanation	Commentary	
	procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.		
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The statements relate to a global estimate of tonnes and grade.	